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ABSTRACT 

Although lumber bending and tensile strength properties have been extensively studied, thcir ccl- 

functioning-so important to the performance of structures-is not well understood. A novel applli- 
cation of proofloading is now available to wood scientists who need to estimate the cofunctioning of 
two strength properties. This technique and a statistical analysis of the data developed from the 
proofload experiments are presented. 

Kc>y~ ,ords :  I'roofload, strength properties, correlation, cofunctioning, concomitance. 

INTRODUCTION 

Lumber grading, whether by visual or mechanical means, is an effort to sort 
lumber nondestructively so that the lumber in the resulting grade will perform 
adequately for all claimed properties. Although lumber bending and tensile strength 
properties have been studied fbr many years, adequately modeling the property 
estimation process has been a difficult task. This estimation process must contend 
with the probability of occurrence of critical characteristics in the test span and, 
of course ultimately, with the occurrence of these same characteristics in the 
loaded span in actual use. Recently, Riberholt and Madsen (1979) addressed this 
latter statistical question, and the Forest Products Laboratory (FPL) began sim- 
ilar work. The statistical distribution of defects, of course, was one of the bases 
of the modern laminating process (Freas and Selbo 1954). 

Of the six mechanical properties of lumber specified as part of standard wootl 
design practice (NFPA 1977) and related to lumber grading criteria, five are strength 
properties: bending, tension, compression parallel, shear, compression pel pen- 
dicular. At least three (bending, tension, compression parallel) cannot be evalu- 
ated independently on the same piece of lumber by conventional tests; yet it is 
evident that some characteristics (for example, edge knots) influence failure in 
more than one strength mode. 

These observations lead to the notion of concomitance, or cofunctioning, of 

' T h i s  work was conducted while Galligan was on the staff of the Forest Products Laboratory. The 
Laboratory is maintained by the USLIA Forest Service at Madison, WI 53705. in cooperation with 
the University of Wisconsin. The article was written and prepared by U.S. government employees 
on official time and it is thel-efore in the public domain. 
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properties in a piece. ("Concomitance" is used here in its general context of 
cofunctioning rather than in its narrower technical statistical sense as a covariate.) 
Concomitant properties are defined as those properties that function "together" 
in certain structural uses such as wood trusses. By current design practice (NFPA 
1977) these properties are treated as independent but are considered to have joint 
influence on structural performance. The degree of concomitance can, presum- 
ably, influence product performance as defined by the design procedure. 

One approach to addressing concomitance is to test actual lumber under com- 
bined stresses. Early efforts at this (Senft 1973; Senft and Suddarth 1970) are not 
very revealing; recent research (Zahn 1981) should provide new insights to com- 
bined stress performance. Another approach to concomitance is to recognize the 
strength prediction methods currently used in the grading of lumber and to use 
these in an attempt to quantify the degree of concomitance. The most sophisti- 
cated of these methods is the use of defect size plus modulus of elasticity (E) to 
predict strength through regression. An initial attempt using this approach em- 
ployed proofloading to identify the correlation between regression residuals (Gal- 
ligan et al. 1980). That research has since been expanded to include further proof- 
loaded data sets. 

This report summarizes the current state-of-the-art, combining previous results 
with analysis of two new data sets. Specifically, it includes the estimation of the 
correlation among the residuals in the regression of strength properties on stiff- 
ness and edge knot size, and the development of an ancillary approach to esti- 
mating the correlation hetween bending and tension or bending and compression 
directly (i .e. ,  without concern for the regression residuals). 

The basis for this research is a mathematical approach (Galligan et al. 1980) 
that permits estimation of the error correlation in a regression model for strength. 
This approach, in turn. depends upon censoring a lumber strength distribution 
using proofloading (Johnson 1980)-a novel application of this latter technique. 

Lumber specimens were selected in sufficient quantity to permit several levels 
of censoring. Censoring was done by proofloading a portion of the pieces to failure 
either in compression parallel or tension parallel. Pieces passing the proofload 
then were failed in bending. 

MATERIAL SELECTION A N D  TESTS 

Lumber grades and species chosen for tests were No. 2 medium grain KI) 
southern pine (medium grain lumber was at the time of sampling a common grade 
classification for southern pine) and 1.5E-1650f hem-fir 2 x 4's, 14 feet long. All 
lumber was randomly selected, the southern pine at a mill in Oklahoma and the 
hem-fir at a mill in the state of Washington. 

In the first experiments, reported in Galligan et al. (1980), 720 pieces of each 
specieslgrade combination were chosen and randomly divided into three sets each 
of 80 specimens and four sets each of 120 specimens. The 80-specimen sets were 
broken in bending, tension, or compression with no proofload. The 120-specimen 
sets were proofloaded either in compression or tension and the survivors broken 
in bending. Proofload targets were set with the intent of achieving 85% and 95% 
survival. These "low" levels were chosen so that concomitance analysis would 
relate to data in which design levels are based only on near-minimum specimens. 
These first tests (Galligan et al. 1980) demonstrated the need to fail a higher 
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FALURE UNDER TENS/L E PROOFLOAD 

FA/LURE UNDER COMPRESS/VE PROOFLOAD 

SPEC/MEN SET NO. 

FIG. 1. Diagram of lumber testing plan for southern pine No. 2 KD. Percentages are prol~ortion 
of pieces that failed by proofloading. A similar series was carried out for 1.5E-1650f hem-fir. 

percentage of specimens in proofloading. Consequently one further set of south- 
ern pine and one of hem-fir were subsequently tested at the proofload designed 
to fail an estimated 50% of the specimens. 

Data from all sets includeti E measured on edge according to ASTM 1) 198 
(1970) and by both stress wave and E computer. These E values were measured 
on each piece. Knot size, strength ratio, and machine stress-rated (MSR) visual 
edge knot quality levels also were among the data measured to permit multivariate 
modeling. The lumber was conditioned and tested at Washington State University 
in accordance with ASTM procedures. 

Further details of the testing procedures used have been outlined (Galligan et 
al. 1982) and the complete data set summarized (Fig. I). The two compression 
proofload sets 6SP and 7HF were removed from the analysis because far too few 
failed the proofload. 

M A T H E M A T I C A L  APPROACH 

Correlation between regression r~siduals  (conditional correlation) 

The basic approach depends upon identifying the correlation between residuals 
in two regressions used to predict two strength properties from the same predic- 
tion variables (Galligan et al. 1980). Proofloading gives additional information to 
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facilitate identification of the residual correlation. To illustrate: assume that bend- 
ing and tension are the two strength properties of interest. The model assumes 
that the dependent variables-bending strength, b, and tensile strength, t-satisfy 

conditional on k independent variables, x grading variables. Here B,, B,, . . . . 
B, and T,,, T,, . . . , T, are the regression coefficients. For example, x ,  may 
represent E and x ,  knot size. It is further assumed that the additive errors eb.et 

have means equal to zero, variances ub2,u,2 and covariance pb tuhut  where p,, 
denotes the correlation between eb and s. p,, can also be thought of as the 
conditional correlation between bending and tension. 

Because we cannot simultaneously observe b and t on a single specimen (each 
is a destructively observed measurement), we consider a strategy in which a 
sample of size N is first proofloaded in tension to a load L. If a specimen ttoes 
not fail in tension at loading level L, it is then loaded to its ultimate bending 
strength. Under this testing scheme we observe either 

t =. tensile strength if t G L 

b = bending strength and t :> L 

for each of the N specimens. 
We tentatively assume that, conditional on all of the values of the predictor 

variables, the errors ( e h j r c t j ) ,  j = 1 ,  2 ,  . . . , N are independent and have a bivari- 
ate normal distribution. The conditional likelihood Y [given xi = (xlj. xZi, . . . . 
xkj),  j = 1, 2 ,  . . . , NI then has the form of a product of two types of terms. A 
tension failure contributes a marginal term, while a bending failure contribtltcs 
its marginal term times a conditional term expressing that the specimen passed 
the proofload. 

where = [ L  - T , ,  - T , x I j  - . . . - Ut Tkxk, - Pbt - 
U b  

p is a correlation and cr a btandard deviation whose subscripts denote the strength 
properties. In this likelihood, expression (t,, x,,, . . . , xkJ are known for those 
members that failed the'proofload, and fb,, x,,, . . . , x,,) are known for those 
members that passed. Thus, the conditional likelihood Y can be maximized over 
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values of the parameters p ,,,, uh ,  u t ,  (Bo, BI ,  . . . , Bk), and (T,, T I ,  . . . , T,) to 
obtain their maximum likelihood estimates. 

Several models employing different E measurements and strength ratio and 
knot size criteria were explored to develop efficient models consistent between 
the pairs, bending and compression, and bending and tension. The models se- 
lected for analysis were of the following forms: 

bending = B,, + B,(E,,,J + B,(edge knot) + error@) 
tension = To + T,(E,,,J + T,(edge knot) + error(t) 

compression = C,, + CI(E,,,3 + C,(edge knot) + error(c) (3) 

where E,,,, is an E measured by transverse vibration (E computer) and edge knot 
is the knot size measured in inches. 

Unc.onditiona1 correlation 

One can also directly estimate the correlation between strengths. For a spec- 
imen, selected at random, this is the correlation between its bending strength and 
tensile strength and is different from the conditional correlation p,, in Eq. I. The 
independent variables such as E, edge knot size, and strength ratios are ignored. 
The unconditional model is 

where p, is the mean bending strength, p, is the mean tensile strength, and the 
errors (E,",E~") are jointly normal with zero means, Var(~,") = a,"', Var(e,*) = 

at*' and COV(E~",E,") = p*uh*ut? That is, the unconditional correlation between 
bending and tensile strengths is 

As before, if the jth specimen fails in tension, it contributes a marginal term to 
the likelihood. If the jth specimen survives the proofloacl and is broken in bending, 
it contributes a marginal term times the conditional probability that it did not Sail 
the proofload. The likelihood for a sample of size N ,  when each specimen uncler- 
goes a tension proofload of 1, and those that survive are loaded in bend~ng to 
ultimate failure, is then 

I % (h, pb)210h*' 

where 

--- 

pb)]/ati  qT- p"' 

Relationship between c~onditional and unc~ondrtional correlation 

We now determine the relationship between the unconditional correlation p:' = 

Corr(b,t) in Eq. 4 and the conditional correlation p,, = Corr(cb,cJ in Eq. 1 .  ]in 
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this derivation, we assume that the parameters are all known. By the properties 
of conditional expectation, 

Similarly 

and 

E(c) - E{C,, + C,Xl + . . . + CkXk) (91 

Further 

where pbtubut is the conditional covariance of E ,  and E ,  in Eq. I .  Setting 
B' = (B,, . . . , BJ, T' = (TI,  . . . , TJ and C' = (C,, . . . , CJ 

where 2, is the covariance matrix of X I ,  . . . , X,. A similar calculation f o ~  
other cases gives 

Thus, 

RESULTS 

Corrc~lation bet\z?een regression resicl~rals 

Implementation of the numerical computations using the models of Eq. 3 proved 
difficult. The regression parameter estimates from the specimens that failed under 
low proofloading were not adequate because few of the specimens failed at low 
proofload levels. To surmount this difficulty, we adopted an approach in which 
all the parameters except the correlation between residuals, p,  were considered 
fixed. Numerical values for a, and B,, B,, and B, were obtained by the least 
squares procedure from the specimen set in which all specimens were broken in 
bending (specimen set 4 in Fig. I ) .  Likewise, estimates for at and To, T, ,  and T,, 
and u,. and C,,, C , ,  and C, were obtained from sets in which specimens were 
tested exclusively in tension or compression, respectively. 

Table 1 summarizes the resulting regression  parameter^.^ It also shows that the 
value of E,.,,, and edge knot size as predictors (measured by the coefficient of 

"ven if one decides to maximize the likelihood, Y, over all regression parameters as originally 
intended. the calculation must be iterative. The numerical values obtained from the "no proofload" 
destructive tests by least squares can then serve as initial values. 
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TABI t I. Sli tntn~ry (!f,fit und ( ~ s t i n l u t ~ . ~  ~ f ' p a r a n l ~ t e r . ~  for the regrc>ssion moriel. 

Edge knot Var~ance .  
S p e c ~ e \ "  Strength C'on\tanl b p t r  SILC rz K 2  ' 

Southern pine Tensile TI, = 748.6 T I  = 2.206 T, = --47.97 393,909 0.5081 
Bending B,, = 1,342.3 B, = 3.496 B, = --57.65 1,667.724 ,3386 
Compression C,, = 2,086.4 C ,  = 1.585 C, = 1 0 . 5 5  134,514 ,5096 

Hem-fir Tensile T,, = 1,290.2 T I  = 2.461 T, = --94.81 1,885,485 .3274 
Bending B , , =  1,313.5 B 1 = 2 . 9 7 4  B,=--63 .86  2,701,140 ,2057 
Compression C,, = 2,222.2 C ,  = 1.388 C, = 0.94 393,246 ,2228 

" SP - Nu.  2 KD.  H F  = I . ? t  MSK. 
A, ~lluhtrared by model l t .q 31 

' Squal-ed multiple correlation coel'ticlent 

determination, R2) is lower for the MSR hem-fir (HF) than for the visually graded 
southern pine (SP), a result often observed for regressions based on samples such 
as MSR that contain a limited range in the independent variables. 

Table 2 summarizes the estimates for p in the conditional regression model 
(Eq. 1 )  from the eight proofload experiments coded 2SP, 3SP, 7SP, 8SP, IHF', 
3HF, 6HF, 8HF. The estimates from 2HF and 3SP must be viewed with more 
caution than the other?. In each case, only 8 out of 120 specimens failed the 
proofload, so we conjecture that the data are not sufficiently informative con- 
cerning p. The hem-fir results are quite consistent with the highest-tension proof- 
load (nearest 50% failure) providing the shortest approximate confidence interval. 

The three estimated correlations ( p )  between bending and tension for hem-fi~r 
are considerably higher than their counterparts for southern pine (Table 2). We 
also calculated an approximate large sample confidence interval for p,  cons~s t~ng 
of all p such that 

E\tirnated Approx~inatc 
Pallure rn~lde Proport~on residual 95% contiilence 

Proofload failing correla- ~nterv.tl 
PI oofload Survivor level. L proofload tlon. 6 for p 

Southern pine 3SP 
2SP 
8SP 
7SP 

tension 
tension 
tension 
compression 

tension 
tension 
tension 
compression 

bending 
bending 
bending 
bending 

bending 
bending 
bending 
bending 

psi 

,339 
1,657 
2.350 

h3 ,588 

" Speclrnen 108 fdlled at lenston 1.339 PSI. 
" Spcclmrn 84 faded ;,I comprc\\iun 1.588 pl 
' Spcc~mcn 103 hilcd at tcncion ?.hl l psl. 
" Speclrnen 76 killed ;I! compre\\~iin 4.1138 p\l. 
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' r ~ t 3 1 . t  3.  E ~ f i m ( l t e ~  O ~ ~ ( I I . ( I I ? ! ~ ~ C I . . ~  ill ~ / I C  unconditioned model, Eq. 15 .  

Population mean Standard deviat~on 
I>ata .- 

Specie, ~ o d e  Pt Pi7 PC a t -  ~ b *  ur a 

Southern pine I SP  2,509.1 883.02 
4SP 4,147.9 1,567.73 
5SP 3,780.9 516.96 

Hem-fir IHF 4,898.6 1,652.73 
4H F 6,183.2 1,820.35 
H F  4,564.5 702.16 

- 

where x2,(0.05) is the upper 5% point of the x2 distribution with 1 degree of 
freedom and Y(p)  is the likelihood (Eq. 2) with p as the only unknown parameter. 
For southern pine, the width of the confidence intervals suggested that zero 
correlations are plausible. Double precision was required to evaluate the log of 
the normal integral in - 2 In Y ( p ) .  

We modeled strength properties, given E,,,, and edge knot size, as  having a 
normal distribution. However, some experimental evidence suggests that a three- 
parameter Weibull or other distribution may be more appropriate. Unfortunately, 
any inadequacy in Eq. 3 caused by ignoring important prediction variable4 or 
incorrect distributional assumptions in Eq. 2 would likely result in an increased 
error correlation. In this respect, the normal theory maximum likelihood estimate 
of p may not be very robust if, in fact, the model is misspecified. 

Unconditional correlation 

Similar to our analysls of the likelihood (Eq. 2) we treat all of the paramelers 
in Eq. 6, except p*,  as fixed. The other parameters are estimated from the ex- 
perimental data obtained from nonproofloading schemes (Table 3) .  

Our likelihood routine then maximizes L,* over p* (Table 4) using the appro- 
priate estimates from Table 3. 

The hem-fir tension-bending schemes consistently estimate a high value for p' . 
The shortest confidence interval comes from the highest proofload. Except for 
the 3SP set in which only 8 of 120 specimens failed in tension, the high correla- 
tions also seem to hold for southern pine. 

TABLE 4. .I'~(mrnorv qf'estim(~tes of p* from the unconditioned model. 
- - 

Failure mode Approximate '45% 
-- Proofload Estimate, confidence 

Specie, Llata code Proofload Survivor level. I. d' interval for ,,* 

Southern pine 

Hem-fir 

tension 
tension 
tension 
compression 

tension 
tension 
tension 
compression 

bending 
bending 
bending 
bending 

bending 
bending 
bending 
bending 

psi 

1,339 
1,657 
2,350 
3,588 

2,61 1 
2,857 
4,885 
4,038 
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These results are limited by the assumption that the strength properties are 
jointly normal. It is well known that for strength the Weibull is usually more 
appropriate than the normal distribution. Large sample sizes do not alleviate the 
difficulty in the estimation of p* as they do for estimation of the means. 

Relationship between c.onditionu1 and unconditional correlation 

As one check on the conditional model, we compare the direct estimate of 
p." = Corr(b,t) with that obtained using the parameter estimates for the condi- 
tional model and the relation Eq. 12. In this example the correlation of interest 
is that between bending and compression in hem-fir. Data set 4HF will be used 
to estimate B, ZX, ah, and a,. Thus 

B'Z,B = B,~v~~(E , , , , )  + BZ2var(Edge knot size) 
+ ?B,B,C~V(E ,.,,,,, Edge knot size) 

= 681 -85 1.9 

Continuing the comp~ltation of Eq. 12 using the estimate of pbc from data set 
6HF, we determine 

This may be compared to the estimate p,,* = 0.5 (Table 4). The comparison for 
the other sets with low proofload levels is not reliable. 

Srrzsitivity analysis 

In the applications above, the true values of p are unknown. To gain a prelim- 
inary indication on the sensitivity of the estimation approach to some of the 
mechanical method and mathematical assumptions, it was decided to generate 
some data for two proofloads and two choices of error variances. There were loo 
few runs to draw any substantial conclusions but we did note 

( 1 )  There is indication that increasing the proofload may make the likelihood a 
little more peaked. 

(2) Reducing the standard deviation of the errors by a factor of 2 does not seem 
to help in the determination of p. 

These conclusions concerning sensitivity are tentative and the major conclusion 
is that the method should be checked by further runs. 

Finally, we note that it is clear from Eq. 2 that the likelihood depends on 
bending and tensile strengths through 

which are standard normal variables. If both (bj,tj) were available for every spec- 
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imen (they are not), the estimation of p,, would not be influenced even if a, ancl 
at were greatly reduced. However, the other quantity of interest in the likelihood 
is a,: 

Because [L - T, - Tlxl j  - . . . - T,xkj] is divided by a t ,  the size of at does 
influence the precision of the estimate of p,,. 

CONCLUSIONS 

( I )  Information about p can be obtained from proofloading experiments of the 
kind conducted. However, 120 specimens are not sufficient to determine p to 
within ?0. 1 with high confidence. 

(2) The residual correlations for the 1.5E-1650f MSR hem-fir appears consis- 
tently higher for each data set than for the comparable data set for visually graded 
No. 2 KD southern pine. The correlation between tension and bending appears 
to be significantly higher than that between compression and bending. The con- 
fidence intervals, however, are very broad. 

(3) More efficient computer analysis programs seem possible but complex. 
Attention to this objective would permit return to the original approach of esti- 
mating regression parameters from the proofload data sets. 
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