
SPC METHODS FOR DETECTING SIMPLE SAWING DEFECTS USING
REAL-TIME LASER RANGE SENSOR DATA

Christina Staudhammer*
Assistant Professor

School of Forest Resources and Conservation
University of Florida

349 Newins-Ziegler Hall
Gainesville, FL 32611-0410

Robert A. Kozak and Thomas C. Maness
Associate Professors
Faculty of Forestry

University of British Columbia
2424 Main Mall

Vancouver B.C. V6T 1Z4 Canada

(Received March 2005)

ABSTRACT

Effective statistical process control (SPC) procedures can greatly enhance product value and yield in the
lumber industry, ensuring accuracy and minimum waste. To this end, many mills are implementing
automated real-time SPC with non-contact laser range sensors (LRS). These systems have, thus far, had
only limited success because of frequent false alarms and have led to tolerances being set excessively wide
and real problems being missed. Current SPC algorithms are based on manual sampling methods and,
consequently, are not appropriate for the volume of data generated by real-time systems. The objective of
this research was to establish a system for real-time LRS size control data for automated lumber manu-
facturing. An SPC system was developed that incorporated multi-sensor data, and new SPC charts were
developed that went beyond traditional size control methods, simultaneously monitoring multiple surfaces
and specifically targeting common sawing defects. In this paper, eleven candidate control charts were
evaluated. Traditional X-bar and range charts are suggested, which were explicitly developed to take into
account the components of variance in the model. Applying these methods will lead to process improve-
ments for sawmills using automated quality control systems, so that machines producing defective ma-
terial can be identified and prompt repairs made.

Keywords: Lumber size control, statistical process control (SPC), control charts, real-time data collec-
tion, lumber manufacturing, simulation.

INTRODUCTION

For more than three decades, Shewhart con-
trol charts (Shewhart 1931) have helped auto-
mated lumber manufacturers to monitor the saw-
ing process and produce lumber to consistent
size standards. In order to successfully apply
Shewhart’s methods, process data must meet
three assumptions: normality, independence, and
homogeneity of variance (Mastrangelo et al.

2001). Under typical mill conditions, statistical
process control (SPC) is conducted manually; a
small group of sample boards is taken from the
sawing process at infrequent time intervals and
measured with digital calipers. Under these con-
ditions, the three assumptions are met. The suc-
cess of SPC programs has led to their wide-
spread use in modern sawmills, and lumber
manufacturers can directly attribute sizeable cost
savings to their SPC practices (Maness 1993;
Young and Winistorfer 1999).

New technologies for SPC in lumber manu-* Corresponding author
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facturing include laser range sensors (LRS),
which make real-time measurement of the saw-
ing process possible. When set up in-line with
sawing machines, each piece of lumber pro-
cessed is measured at a very fine scale, making
thousands of measurements per sawn piece
available. Moreover, these systems can be set up
with multiple LRSs, enabling data collection on
each side of each board. This is of particular
interest in modern mills, where it is standard to
cut the opposing sides of each board with dif-
ferent saws.

Many mills are now implementing real-time
scanning technologies; however, SPC methods
have not been updated to reflect the increased
sampling frequency or the capacity of this new
technology. Mills using LRSs have anecdotally
reported that control limits must be set manually
in order to prevent false out-of-control signals
from overwhelming their systems. This is not
surprising; current SPC methods do not transfer
directly to this new real-time technology, as the
statistical model which describes the real-time
data is different from that of manual sampling.
Moreover, SPC methods have not been updated
to take advantage of the opportunity to better
describe the sawing process with the additional
data available.

Since real-time measurement systems take a
very large number of autocorrelated observa-
tions on each side of each board, many of the
assumptions needed to use the usual inferential
statistics associated with SPC charts, e.g., inde-
pendent and identically distributed (iid) data, are
violated. Control charts must specifically take
autocorrelation into account (Montgomery and
Mastrangelo 1991), and where appropriate, al-
ternative measures, such as control charts for
dependent and/or non-normal data (Padgett and
Spurrier 1990; Grimshaw and Alt 1997), need to
be developed.

A statistical model describing real-time LRS
measurements taken from multiple boards and
multiple surfaces has been derived (Staudham-
mer et al. 2005). While the usual statistical
model for SPC contains components for within-
and between-board variation, the LRS model

contains additional components of variance
(COV) from laser positions and the interaction
between boards and laser positions. These com-
ponents provide the basis of a SPC system for
monitoring measurable product attributes like
average board size.

With the additional data made available by
this technology, there is an opportunity to more
thoroughly monitor the sawing process. Systems
can be designed to target known causes of sub-
standard product by identifying specific sawing
defects. For example, Rasmussen et al. (2004)
documented several sawing defects that are
identifiable with laser scanning technology. Us-
ing multiple LRSs, an SPC system for real-time
data has the capacity to better describe the saw-
ing process and prevent production of lumber
with specific kinds of defects. The objective of
this paper is to present control charts based on a
statistical model of the sequence of real-time
LRS measurements. This system would be used
to monitor the sawing process, targeting two
specific kinds of defects common to automated
sawmills, machine positioning defects and
wedge.

BACKGROUND

Identifying simple sawing defects with SPC

Lumber shape defects occur frequently in the
sawing process, and have a variety of causes.
Fig. 1 shows a normal board versus two simple
defects that are identifiable with laser scanning

FIG. 1. Normal sawing versus two types of sawing de-
fects.
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technology (Rasmussen et al. 2004). Machine
positioning or setworks problems occur when
saw guides are not set to the correct distance,
causing sawn boards to be too thick or too thin
along the entire length of the board. This defect
can occur because of software problems, worn
parts, or improper pressure applied to saw
guides (Maness et al. 2003). Whereas machine
positioning problems tend to cause a uniform
change across the width and length of the board,
wedge is characterized by an unevenly sawn sur-
face. Wedge often occurs when the saws are
misaligned, causing a thickening (or thinning)
from the bottom to the top of the board that is

consistent along the length of the board (Ras-
mussen et al. 2004). These defects have obvious
consequences for production mills, where prod-
ucts are made to meet specific customer toler-
ances.

With current methods, these defects are not
always recognizable. As detailed in Maness et
al. (2004), four charts are commonly used: the
X-bar, R, Sw, and Sb charts (Table 1). When
correct COV are used and groups of boards are
sampled periodically, the X-bar and S charts
have a false alarm rate of 0.27%, or an in-control
average run length (ARL) of 1/0.0027≈ 373
(Montgomery 2001), and the R chart has a false

TABLE 1. Commonly used SPC charts in lumber processing.

Chart Statistic Monitored Control Limits

X-bar Average board thickness CL = X

LCL = X − 3�̂X�c4

UCL = X + 3�̂X�c4

R Range of grouped board thickness averages CL = R

LCL = D0.001R�d2

UCL = D0.999R�d2

Sw Within-board variability CL = �̂w�c4

LCL = ���0.0015;n−1�
2 � n − 1��̂w�c4

UCL = ���0.9985;n−1�
2 � n − 1��̂w�c4

Sb Between-board variability CL = �̂b

LCL = �̂b���0.0015;df�
2 ��df�

UCL = �̂b���0.9985;df�
2 ��df�

where: CL is the centreline;
LCL and UCL are the lower and upper control limits, respectively;
X is the long-term estimate of the average thickness over all boards and measurement locations;

�̂X =��̂b
2

b
+

�̂w
2

nb
;

�̂2
w and �̂2

b are long-term estimates of the within- and between-board variances, respectively;
c4 and d2 are control chart constants that correct for bias†;
R is the long term average range of board thickness values for groups of boards;
D0.001 and D0.999 are cumulative probability values for the range (Harter 1960);
�2

(0.0015;n−1) and �2
(0.9985;n−1)are cumulative probability values for chi-square distribution with n-1 degrees of freedom;

df =
�n�̂b

2�2

MSb
2

b − 1
+

MSw
2

b�n − 1�

; and

MSb and MSw are the between- and within-board mean squares from a one-way ANOVA
† For detailed derivation of these constants, see, for example, Montgomery (2001).
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alarm rate of 0.2%, or an ARL of 1/0.002≈ 500.1

If machine positioning problems result in con-
sistent differences from the target, they are de-
tected by a shift in the X-bar chart. If these prob-
lems are inconsistent, i.e., different from board
to board, they are detected in a chart for be-
tween-board variation. Since data from each
board are grouped together without regard to the
location of the measurements along the board,
wedge could easily be undetected by an X-bar
chart. Although this defect would likely produce
a signal on an Sw or R chart, so would other
sawing defects, such as snake and taper.2 It
would then require further investigation on the
part of SPC personnel to determine the exact
cause of the chart’s signal.

A model of real-time SPC data from laser
range sensors

Commercially available real-time systems can
be configured to scan both “face” sides of a
board or cant as it leaves a sawing machine.
Multiple LRSs can also be stacked so that mul-
tiple measurement streams are taken on each
side of the board/cant. In such systems, multiple
saws and saw types may be in use, giving rise to
data from multiple sawing configurations. A
mixed-effects model describing the real-time
LRS measurements taken from multiple sawing
configurations, boards, sides, and laser positions
allowed for different variance components for
each saw configuration × side combination
(Staudhammer et al. 2005). The profile observa-
tions, yijklm, from the ith saw configuration (i �
1 to 4), jth side (j � 1 to 2), kth sample (k � bi),

lth laser location (l � 1 to 2), and mth distance
along the board (m � 1 to nijkl) were modeled
with random effects for boards (�ijk), laser po-
sitions (�ijl), and their interaction (��ijkl):

yijklm � µij + �ijk + �ijl + ��ijkl + �ijklm (1)

where: �ijklm � the residual error associated
with the mth measurement from the lth laser
location and kth sample board, in the ith saw
configuration and jth side.

Within each saw configuration, residual plots
showed model components were homoscedastic
(i.e., Var(�ijklm) � ��ij

2, Var(�ijk) � ��ij

2,
Var(�ijl) � ��ij

2, and Var(��ijkl) � ���ij

2). The
sample board and board × laser position aver-
ages were found to be approximately normally
distributed, with non-significant amounts of au-
tocorrelation (Kolmogorov-Smirnov test, � >
0.25), and this observation was further verified
during field data collection using subsequently
sawn boards. On the other hand, nearly every
series of measurements taken from a single
sample, side, and laser position exhibited large
and significant amounts of autocorrelation for up
to 200 lags for bandsawn and circular sawn
boards and up to 50 lags for chipped boards (Fig.
2). In other words, bandsawn and circular sawn
measurements separated by 200 observations
showed high autocorrelation (� > 0.5). Further, a
Kolmogorov-Smirnov test indicated that nearly
every series of measurements taken from a
single sample, side, and laser position was sig-
nificantly non-normal (� � 0.05). However, be-
cause autocorrelation results in inflated degrees

1 In order to make direct comparisons to other charts with
3-Sigma limits, control limits that give a false alarm rate of
∼0.27% are desired. This implies upper and lower quantiles
of 0.0135% and 0.9865%; however, tabulated values for the
distribution of ranges (Harter 1960) are only available at
0.001 increments, and thus, the closest values were used for
this chart, as well as all other Range and Moving Range
charts in this paper.

2 Snake is a sawing defect in which an uneven wave
pattern is present on the surface of the board, whereas taper
is characterized by a gradual increase (or decrease) in thick-
ness along the length of a board.

FIG. 2. Autocorrelation function for a single sample
board × laser position series from each of three saw types.
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of freedom, normality tests are excessively sen-
sitive (Pardo-Iguzquiza and Dowd 2004).3

In order to describe individual observations
taken by each LRS, the autocorrelation in the
data needed to be explicitly accounted for. Using
a multi-stage model, the autocorrelation in these
errors were estimated in Staudhammer, et al.
(2005) with autoregressive integrated moving
average (ARIMA) models and ARIMA models
modified for seasonal and long-memory effects
(seasonal autoregressive fractionally integrated
moving average, or SARFIMA models). The pa-
rameters from (1) were then fit with the esti-
mated autocorrelated error covariance matrix.

This model provided a good description of the
correlative structure within each sample board,
side, and laser, and could be used with SPC
methods developed exclusively for autocorre-
lated data (e.g., Montgomery and Mastrangelo
1991; Cook 1992; Gilbert et al. 1997; Lu and
Reynolds 1999; Young and Winistorfer 2001;
Noffsinger and Anderson 2002). In Young and
Winistofer (2001), for example, the moisture
content of medium-density fiberboard (MDF)
samples taken at two to five-hour intervals were
described by a first order autoregressive model
(AR(1)). Residuals from this model were then
plotted on SPC charts for individuals. Gilbert et
al. (1997) collected subgrouped data from a con-
tainer-filling process, and within these sub-
groups, measurements followed an AR(1) pro-
cess. Shewhart control chart limits were instead
adjusted to account for underestimation of the
process variation caused by first order autocor-
relation.

In the case of LRS data, the large autocorre-
lation is between subsequent measurements
within each board. Using the techniques de-
scribed above, an X-individuals chart could be
applied to the stream of measurements, or sub-
groups could be formed by grouping measure-
ments from each board. Although a rational sub-
group should be chosen such that short-term

within subgroup variation is captured, while al-
lowing for variation to occur between subgroups
(Gilbert et al. 1997), only a “logical” subgroup-
ing may be possible without arbitrarily breaking
the boards into sections or taking a sub-sample
of measurements. If measurements taken from a
single board constitute a subgroup, then model
residuals could be charted using existing meth-
ods. However, given the ∼3,000 measurements
per board collected by the LRSs, the feasibility
and utility of such an exercise are questionable.
Moreover, Staudhammer, et al. (2005) found
that if only summary statistics by sample and
side are needed for SPC, the properties of the
residual variance may not be as important. This
is because autocorrelation does not affect the
accuracy of averages, and the measure of the
variation in these averages is a standard error
that is comprised of components tied to each
effect in the model. For example, the X-bar chart
described by Maness et al. (2003) uses the stan-
dard error of the mean board thickness for a
group of boards. Using the LRS model, this cal-
culation uses the standard deviation of the mean
by board and laser (yijkl·), for each saw configu-
ration and side (ij):

�yijkl·
=�var��ijkl·� + var��ijkl·� + var���ijkl·�

+ var��ijkl·�

= ���ij

2 + ��ij

2 + ���ij

2 + var��ijkl·� (2)

In Staudhammer et al. (2005), it was shown that
the variance of the average residuals (�ijkl·) ap-
proaches zero when large numbers of observa-
tions are taken per board, side, and laser. Thus,
the contribution of the residual variation (��ij

2)
to the standard error of the mean is negligible,
and for use in detecting the common sawing
defects described, the autocorrelation in the
model can be ignored with only a negligible
change in accuracy.

METHODS

Sample lumber data

In order to obtain multiple measurement
stream data, a laboratory-based measurement

3 This was confirmed by tests of sub-sampled data; in 100
random samples of 30 LRS measurements per board, side,
and laser, only 14% showed significant departure from nor-
mality.
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apparatus, which mimicked commercial sys-
tems, was set up in the Q-Lab of the Department
of Wood Science in the Forest Sciences Centre
at The University of British Columbia, Vancou-
ver, Canada (Fig. 3). This apparatus consisted of
a moving carriage, encoder, and four laser mea-
surement devices. Four Hermary LRS-50 point
laser range sensors were stack-mounted, two on
each side of the carriage. Side 1-Laser 1 and
Side 2-Laser 1 were vertically positioned to take
measurements 2.54 cm (one in.) above the bot-
tom of the board, Side 1-Laser 2 and Side 2-La-
ser 2 took measurements 2.54 cm (one in.) be-
low the top of the board.

As the carriage moved the boards past the

laser scanners at a controlled speed, the four
streams of laser measurement data and encoder
measurements of the location of the carriage
were sent to a data concentrator and passed to a
computer via Ethernet cable. The raw LRS data
consisted of the distance from each of the four
lasers to the wood surface, and the encoder data
consisted of the distance along the length of the
carriage. Under typical modern sawmill condi-
tions, about 3,000 measurements can be taken
with one LRS on an 8-foot board (Fig. 3).

Sample lumber obtained from Weyerhaeu-
ser’s New Westminster (British Columbia,
Canada) sawmill consisted of 110 pieces of Ta-
ruki, a western hemlock (Tsuga heterophyla

FIG. 3. Set up of LRS measurement apparatus (as viewed from above) and resulting LRS data from a single sample
board, side, and laser position.
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(Raf) Sarg.) dimension lumber product marketed
to Japan with target thickness and width dimen-
sions of 80 × 135 mm (2 1/32 × 5 5/16 in.),
respectively. The green and un-planed samples
of Taruki were removed from the mill process-
ing line at the sorter. A random sample of lum-
ber was desired to meet statistical assumptions.
However, during normal mill operating condi-
tions, only an arbitrary sample consisting of the
first 100 pieces of Taruki sawn in a single shift
was possible. On the other hand, since the mill
was producing lumber of several species and
dimensions, and there was substantial lag time
between sawing and sorting, sampling did have
a random element. These boards were consid-
ered a representative sample of lumber sawn
during a period of hours.

The primary sawing of this lumber was done
at the quad-bandsaw, and thus there were several
cutting solutions with various saw configura-
tions. Results were obtained separately for each
of four saw configuration × side combinations:
BB (both sides of the board bandsawn), BC
(Side 1 bandsawn, Side 2 chipped), CB (Side 1
chipped, Side 2 bandsawn), and RR (both sides
circular-sawn). Areas containing non-sawing de-
fects, such as wane, were removed from these
data manually, using the known positions of
these defects mapped at the time of data collec-
tion. These data were then filtered for measure-
ment errors using techniques from image pro-
cessing (see Staudhammer 2004). Finally, these
data were converted from distances (from the
laser to the board surface) to profile quantities
using the center of the board as a reference.

Proposed control charts

Control limits and other descriptors were de-
veloped to best detect the two common sawing
defects using summary statistics within board.
For each defect type, several candidate control
charts are presented. The basis for these control
charts are the average profile values by board
and by laser, and the COV from the statistical
model (1). When computing averages and COV,
independent and identically distributed normal

variates were assumed. Control limits were
based on the traditional 3-sigma control charts
originally developed by Shewhart (1931), and
extended to processes exhibiting between- and
within-part-size variability (Maness et al. 2003).

Control charts for lumber manufacturing have
traditionally been based on subgrouping. Natural
subgrouping occurred here because only small
groups of boards were pulled periodically for
SPC measurement. However, in real-time data
collection, there is no obvious natural subgroup-
ing, as the production of lumber is continuous
with the exception of shift changes and breaks.
To reflect this continuity, control charts for in-
dividuals were investigated where possible. On
the other hand, subgrouping is necessary to con-
struct control charts for the between-board vari-
ance (��ij

2). Control charts for moving statistics,
such as the moving average and moving stan-
dard deviation, have been used in continuous
processes; however, these charts tend to over-
signal due to correlation introduced by using
overlapping observations (Wheeler 1995). There-
fore, artificial subgroups were created by taking
groups of subsequent boards. In practice, sub-
groups could be formed based on time or by
board location in a gang of multiple saws, for
example.

Although multivariate charts have been sug-
gested for use in industrial processes where mul-
tiple measurement streams are monitored (e.g.,
Young et al. 1999), they are most useful when a
single chart does not provide enough informa-
tion to decide if a process is in control (Wheeler
1995). Single multivariate charts have been
found to be poor operationally, as out-of-control
signals still must be investigated via univariate
control charts in order to determine the cause of
the signals (Does et al. 1999). That being the
case, univariate control charts are suggested for
each sawing defect type discussed as a part of a
multi-chart SPC system for real-time size con-
trol; a single multivariate chart is not suggested.
Rather, univariate charts targeting specific de-
fects are proposed since they give more infor-
mation than simple in-control/out-of-control sig-
nals in that each chart is related to a specific
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sawing problem that can be addressed by mill
staff.

The primary reason for choosing these types
of charts is their ease of use and familiarity to
mill personnel (Young and Winistorfer 1999),
although more modern control charting tech-
niques could have been investigated, such as the
CUSUM and EWMA charts. Since these charts
are often only recommended in conjunction with
Shewhart charts (Woodall et al. 2000), they are
not further investigated here. A summary of the
proposed control charts is given in Table 2.

Proposed charts for machine positioning
problems.—Because machine positioning prob-
lems are indicated when boards are consistently
thicker or thinner along their entire lengths,
monitoring for machine positioning problems
was performed with control charts based on av-
erage board values. This included: (1) average
profile by board, (2) range and moving range of
subsequent board averages, and (3) between
board variance.

X-barind Chart: An X-bar chart for individual
boards (X-barind chart) was developed to moni-
tor individual board averages, without using
subgroups. An average profile was computed for
each board (yi·k··), and these values were plotted
on the X-barind chart. Control limits for a par-
ticular saw configuration (i) are given by:

CL = Ti

LCL = CL − 3�̂�yi1k··+yi2k··��2

UCL = CL + 3�̂�yi1k··+yi2k··��2

(3)

where: Ti is the target surface profile value;
�̂(yi1k··+yi2k··)/2

is the estimated standard error of the
average profile value by board for the ith sawing
configuration; and yi1k·· and yi2k·· are the average
Side 1 and Side 2 profiles values, respectively,
for the ith saw configuration and kth board.

The target surface profile value is half the
target thickness value for the sawing configura-
tion. In this case, it was calculated as the long-
term average of the two average profiles by side
for the ith saw configuration (�̂i1··· and �̂i2···

from (1), respectively). These values were ob-
tained from estimating the parameters of the
mixed model in (1) with the SAS procedure
PROC MIXED (Version 8.2, SAS Institute
2002).

Because yi1klm and yi2klm are independent, pa-
rameters in (1) are estimated by saw configura-
tion and side. Thus, the standard errors in (3)
were calculated using two sets of estimated
model parameters:

�̂�yi1k··+yi2k··��2
=�var�yi1k·· + yi2k··

2 �
=�1

4
var�yi1k·· + yi2k··�

=
1

2��̂yi1k··

2 + �̂yi2k··

2 (4)

Using a components of variance approach with
the number of laser positions per side � 2, (4)
becomes:

TABLE 2. Summary of proposed control charts.

Defect Targeted Name of Chart Statistic monitored Eq.

Machine
positioning

X-barind Individual board averages: yi·k·· (3)
X-bargrp Subgrouped board averages: yi·g··· (6)
MR� Moving range of successive board averages: MR(yi·k··)k (9)
R�grp

Range of subgrouped board averages: R(yi·gk··)| k�1
G (11)

S� Between board variation of subgrouped boards: S2
�ijg (13)

Wedge R�ind
Range of laser position averages within board by side: R(yijkl·)| l�1

2 (16)
R�grp

Range of laser position averages within subgroup by side: R(yijg·l·)| l�1
2 (18)

MR�� Moving range of successive board averages by side and laser position: MR(yijkl·)k (20)
R��grp

Range of subgrouped board averages by side and laser position: R(yijgkl·)| k�1
G (22)

S� Between laser position variation for subgrouped boards by side: S2
�ijg (24)

S�� Interaction of board × laser position variation for subgrouped boards by side: S2
��ijg (27)
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where: �̂2
�ij

, �̂2
�ij

, and �̂2
��ij

are estimates of the
COV �2

�ij
, �2

�ij
, and �2

��ij
, respectively, obtained

from estimating the parameters of the mixed
model in (1) with PROC MIXED.

X-bargrp Chart: Because sawing defects
caused by machine positioning problems tend
to occur in subsequently sawn boards, X-bar
charts were also developed using groups of
boards (X-bargrp chart). In manual SPC, natural
subgroups occur as a consequence of periodic
sampling. For these real-time data, artificial
subgroups were created by taking successive
groups of G boards. A range of subgrouping
values was investigated, with G � 4, 6, 8, 10,
12, 16, and 20. Adding an additional subscript to
denote the gth group of G boards, the group
average profile for the ith saw configuration was
yi	g			. These values were plotted on the X-bargrp

chart with control limits for a particular saw con-
figuration (i) given by:

CL = Ti

LCL = CL − 3�̂�yi1g···+yi2g···��2

UCL = CL + 3�̂�yi1g···+yi2g···��2

(6)

where: �̂(yi1g···+yi2g···)/2
is the estimated standard er-

ror of the average profile value by subgroup for
the ith sawing configuration; and yi1g··· and yi2g···

are the average Side 1 and Side 2 profiles values,
respectively, for the ith saw configuration, kth
board, and gth group.

As in (3), the centerline is the target value, Ti,
and the standard error term in (6) uses compo-
nents from the models from each side. Using a
components of variance approach and the esti-
mated parameters from (1), the standard error
for (6) was calculated as:

�̂�yi1g···+yi2g···��2
= 1�2��̂yi1g···

2 + �̂yi2g···

2

≅
1

2
��̂�i1

2 + �̂�i2

2

G
+

�̂�i1

2 + �̂�i2

2

2
+

�̂��i1

2 + �̂��i2

2

2G
(7)

MR� Chart: The moving range (MR) is defined
as the absolute difference between successive
observations. Machine positioning problems are
indicated by large differences between the aver-
age size of subsequently sawn boards, and thus,
a moving range chart based on board averages
(MR� chart) was constructed for detecting this
sawing defect. For monitoring average profiles
from individual boards, the moving range be-
tween the kth and (k + 1)th successive board
averages in the ith saw configuration was com-
puted as:

MR�yi·k··�k = |yi·,k,·· − yi·,k+1,··| (8)

These values were plotted on the MR� chart
with control limits for a particular saw configu-
ration (i) given by:

CL = MR�yi·k··�ki

LCL = �D0.001�d2�MR�yi·k··�ki

UCL = �D0.999�d2�MR�yi·k··�ki

(9)

where: MR(yi·k··)ki
is the average of the moving

ranges between successive boards for the ith saw
configuration.

R�grp
Chart: Machine positioning problems

can also be found by examining the range of
averages in a group of boards. Therefore, a range
chart for subgrouped board averages (R�grp

chart)
was constructed. Adding a subscript for groups,
the board average in the gth subgroup and ith

�̂�yi1k··+yi2k··��2
=

1

2
��̂�i1

2 +
�̂�i1

2 + �̂��i1

2

2
+

var��i1kl·�

2
+ �̂�i2

2 +
�̂�i2

2 + �̂��i2

2

2
+

var��i2kl·�

2

≅
1

2
��̂�i1

2 +
�̂�i1

2 + �̂��i1

2

2
+ �̂�i2

2 +
�̂�i2

2 + �̂��i2

2

2
(5)
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saw configuration was yi·gk··. The range of these
board averages was calculated as:

R�yi·gk··�|k=1
G = Range�yi·g1··, yi·g2··, . . . , yi·gG··�

(10)

These values were plotted on the R�grp
chart with

control limits for a particular saw configuration
(i) given by:

CL = R�yi·gk··�|k=1
G

i

LCL = �D0.001�d2�R�yi·gk··�|k=1
G

i

UCL = �D0.999�d2�R�yi·gk··�|k=1
G

i

(11)

where: R(yi·gk··)| k�1
G

i
is the average of the

R(yi·gk··)|k�1
G values in the ith saw configuration.

S� Chart: Machine positioning problems are
indicated by an increase in the between-board
variation. Thus, a control chart to monitor the
variation due to boards was developed (S�

chart). Using artificial subgroups, the estimated
between board variation for the ith saw configu-
ration, jth side, and gth group (S2

�ijg
) is a linear

combination of the mean squares for board and
board × laser in that group (MS�ijg

and MS��ijg
,

respectively):

S�ijg

2 =
MS�ijg

− MS��ijg

�
l=1

2

nijg·l

(12)

where: nijg·l is the average number of observa-
tions per board in the gth group and lth laser
position, for the ith saw configuration and jth
side.

Values of S2
�ijg

were computed and plotted on
the S� chart. The control limits for a subgroup of
size G in a particular saw configuration (i) and
side (j) were calculated as:

CL = �̂�ij

2

LCL = �̂�ij

2 ��1−��2;df�
2 �df��ij�G

UCL = �̂�ij

2 ����2;df�
2 �df��ij�G

(13)

where: df(�ij)G are the estimated degrees of free-
dom of the Chi-square distribution for ��ij

2 in the

ith saw configuration and jth side, with subgroup
size G.

The degrees of freedom were approximated
using the Satterthwaite procedure (Gaylor and
Hopper 1969)4:

df��ij�G =
�2nij··�̂

2
�ij

�2

MS2
�ij

G − 1
+

MS2
��ij

G − 1

(14)

where: nij·· is the average number of observa-
tions per board and laser position, for the ith saw
configuration and jth side; and

MS�ij
and MS��ij

are the non-grouped mean
squares underlying the estimated parameters
from the mixed-effects model in (1).

Proposed charts for wedge.—Wedge is indi-
cated by a difference between the top and the
bottom laser position measurements (Fig. 1).
Thus, monitoring for wedge involved comparing
the profile values from the top versus bottom
laser positions. This was accomplished with
control charts for (1) ranges, and (2) the be-
tween-laser and board × laser interaction vari-
ances, ��ij

2 and ���ij

2 , respectively. Ranges were
computed for average profile measurements be-
tween laser positions within board, and by board
and laser position between subsequent boards.

R�ind
Chart: To target the difference in average

top and bottom profile measurements within
board, an R chart for laser position averages
within individual boards (R�ind

chart) was devel-
oped. Since there are only two laser positions,
the range between laser positions within each
board for the ith saw configuration, jth side, and
kth board was computed as:

R�yijkl·�| l�1
2 = |yijk1· � yijk2·| (15)

4 In general, this approximation is appropriate when
MS1/MS2 > F(df1, df2; 0.9985)*F(df2, df1; 0.5), where MS1 and
MS2 refer to the mean squares used in the df calculation (in
this case, MS�ij

and MS��ij
), and df1 and df2 refer to their

respective degrees of freedom (Gaylor and Hopper 1969).
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These values were plotted on the R�ind
chart with

control limits for a particular saw configuration
(i) and side (j) given by:

CL = R�yijkl·�| l=1
2

ij

LCL = �D0.001�d2�R�yijkl·�| l=1
2

ij

UCL = �D0.999�d2�R�yijkl·�| l=1
2

ij

(16)

where: R(yijkl·)| l�1
2

ij
is the average of R(yijkl·)| l�1

2

values for the ith saw configuration and jth side.
R�grp

Chart: In the presence of wedge, subse-
quent groups of boards will exhibit differences
between the average profile computed for the
top and bottom laser positions, and thus a range
chart was developed to monitor laser position
averages using artificial subgroups (R�grp

chart).
Adding a subscript to denote the gth subgroup
formed from G successive sample boards, the
average profile by group and laser position for
the ith saw configuration and jth side is yijg·l·.
Since there are only two laser positions, the
range of these average profile values was calcu-
lated for each group as:

R�yijg·l·�|l=1
2 = |yijg·1· − yijg·2·| (17)

These values were plotted on the R�grp
chart with

control limits for a particular saw configuration
(i) and side (j) given by:

CL = R�yijg·l·�|l=1
2

ij

LCL = �D0.001�d2�R�yijg·l·�|l=1
2

ij

UCL = �D0.999�d2�R�yijg·l·�|l=1
2

ij

(18)

where: R(yijg·l·)| l�1
2

ij
is the average of R(yijg·l·)| l�1

2

values for the ith saw configuration, jth side.
MR�� Chart: Wedge is also indicated by a

change in the average values of subsequent pro-
file measurements by board and laser position.
Thus, a moving range chart was developed for
the average profile values by board and laser
position (MR�� chart). Using individual board
values, a moving range between subsequent
boards for the ith saw configuration and jth side
was computed for each lth laser position as:

MR�yijkl·�k = |yij,k,l· − yij,k+1,l·| (19)

These values were plotted on the MR�� chart
with control limits for a particular saw configu-
ration (i), side (j), and laser position (l) given by:

CL = MR�yijkl·�kijl

LCL = �D0.001�d2�MR�yijkl·�kijl

UCL = �D0.999�d2�MR�yijkl·�kijl

(20)

where: MR(yijkl·)kijl
is the average of all MR(yijkl·)k

values for the ith saw configuration, jth side, and
lth laser position.

R��grp
Chart: The change in average profile

measurements by board and laser position was
also be monitored by group. Range charts were
constructed for subgroups of board by laser av-
erages (R��grp

chart). Adding a subscript for the
gth subgroup, the average profile was computed
for each board × laser within each subgroup:
yijgkl·. The range of these averages within each
subgroup for the ith saw configuration, jth side,
and lth laser position was calculated as:

R�yijgkl·�|k=1
G = Range�yijg1l·, yijg2l·, . . . , yijgGl·�

(21)

These values were plotted on the R��grp
chart

with control limits for a particular saw configu-
ration (i), side (j), and laser position (l) given by:

CL = R�yijgkl·�|k=1
G

ijl

LCL = �D0.001�d2�R�yijgkl·�|k=1
G

ijl

UCL = �D0.999�d2�R�yijgkl·�|k=1
G

ijl

(22)

where: R(yijgkl·)| k�1
G

ijl
is the average of the

R(yijgkl·)|k�1
G values in the ith saw configuration,

jth side, and lth laser position.
S� Chart: Wedge results in high laser-to-laser

variation. Thus, a chart was developed to moni-
tor the between laser variation (S� chart). For the
ith saw configuration, jth side, and gth group,
the between laser variation (S2

�ijg) is a linear
combination of the mean squares for laser and
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laser × board in that group (MS�ijg
and MS��ijg

,
respectively):

S�ijg

2 =
MS�ijg

− MS��ijg

�
k=1

G

nijgk·

(23)

where: nijgk· is the average number of observa-
tions per laser in the gth group and kth board, for
the ith saw configuration and jth side.

Values of S2
�ijg were computed and plotted on

the S� chart, with control limits for subgroup
size G in a particular saw configuration (i) and
side (j) calculated as:

CL = �̂�ij

2

LCL = �̂�ij

2 ��1−��2;df�
2 �df��ij�G

UCL = �̂�ij

2 ����2;df�
2 �df��ij�G

(24)

where: df(�ij)G are the estimated degrees of free-
dom of the Chi-square distribution for �2

�ij in the
ith saw configuration, and jth side, with sub-
group size G.

The degrees of freedom were approximated
with the Satterthwaite procedure as in Eq. (14),
using the mean squares and degrees of freedom
associated with calculating S2

�ijg:

df��ij�G = �Gnij··�̂�ij

2 �2��MS�ij

2 �1

+ MS��ij

2 ��G − 1�� (25)

where: MS�ij
and MS��ij

are the non-grouped
mean squares underlying the estimated param-
eters from the mixed-effects model in (1).

S�� Chart: Because wedge can result in high
interaction variation of boards and laser posi-
tions, the S�� chart was developed. The board ×
laser position variance for the ith saw configu-
ration, jth side, and gth group (S2

��ijg
) is a linear

combination of the mean squares for board ×
laser and mean squares residual for that group
(MS��ijg

and MS�ijg
, respectively):

S��ijg

2 =
MS��ijg

− MS�ijg

nijg··

(26)

where: nijg··· is the average number of observa-
tions per board and laser position in the gth
group, for the ith saw configuration and jth side.

Values of S2
��ijg

were computed and plotted on
the S�� chart. The control limits for a subgroup
of size G in a particular saw configuration (i)
and side (j) were calculated as:

CL = �̂��ij

2

LCL = �̂��ij

2 ��1−��2;df�
2 �df���ij�G

UCL = �̂��ij

2 ����2;df�
2 �df���ij�G

(27)

where: df(��ij)G are the estimated degrees of
freedom of the Chi-square distribution for �2

��ij

in the ith saw configuration and jth side, with
subgroup size G.

The degrees of freedom were approximated as
in Eqs. (14) and (25):

df���ij�G = �nij··�̂��ij

2 �2��MS��ij

2 ��G − 1�

+ MS�
2

ij��2G�nij·· − 1��� (28)

where: MS��ij
and MS�ij

are the non-grouped
mean squares underlying the estimated param-
eters from the mixed-effects model in (1).

Evaluation of proposed charts

Ideally, a new SPC system should be evalu-
ated in the field under operational mill condi-
tions. However, it was not possible for the mill
to accommodate our data collection design and
research schedule. Instead, Monte Carlo simula-
tion methods were applied. Using the lab scan
data, the SAS procedure PROC MIXED gave
estimates of all mixed-effects and components
of variance from the model in Eq. (1). These
parameter estimates were used to simulate LRS
data arising from (1), as well as to construct
control limits. The Monte Carlo simulation was
used to evaluate the performance of the charts
under both in-control and out-of-control condi-
tions. Average profiles by board, side, and laser
position were simulated for each saw configura-
tion and side using the following steps:
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For each simulated board, a random board ef-
fect was generated: Bijk ∼ N(0,�̂2

�ij
);

For each simulated laser position, a random
laser position effect was generated: Lijl ∼
N(0,�̂2

�ij
);

For each simulated board and laser position, a
random board × laser effect was generated:
BLijkl ∼ N(0,�̂2

��ij
); and

Using the estimate of the overall average pro-
file value by saw configuration and side (�̂ij),
the simulated average profile by board × side ×
laser position was calculated as:

ỹijkl = �̂ij + Bijk + Lijl + BLijkl

Simulated data were created for various sub-
grouping scenarios. One thousand sample
groups were created, with 1, 4, 6, 8, 10, 12, 16,
and 20 boards per group. To generate simulated
profile observations within each group, board,
side, and laser position, simulated autocorrelated
errors (eijklm) were added to the simulated profile
averages (from Step 4):

ỹijklm = ỹijkl + eijklm

These autocorrelated errors were generated us-
ing the ARIMA and seasonal ARIMA models,
as detailed in Staudhammer et al. (2005).

For evaluating the ability of the charts to de-
tect specific sawing defects, out-of-control data
were generated by modifying the simulated data
to include each type of defect using graduated
levels of severity. To generate boards with ma-
chine positioning problems and wedge, the
simulated profile observations were modified
uniformly along the length of the board. For ma-
chine positioning problems, this was accom-
plished by adding an amount, 
m, to each board,
side, and laser position observation. For wedge,
an amount, 
w/2, was added to the top laser
position observations, while the same amount,

w/2, was subtracted from the bottom laser
position observations. The values of 
m and


w were chosen to represent a range of defect
severities, from small to severe. These values
were chosen in consultation with industry saw-
ing experts (G.S. Shajer and D.C. Wong5, per-
sonal communication, 2004), and are shown in
Table 3.

The proposed charts were evaluated using the
simulated in-control and out-of-control data. For
in-control data, the false alarm rate was evalu-
ated. For out-of-control data, the rate of chart
signaling was evaluated. To evaluate out-of-
control performance of the five charts proposed
for machine positioning problems and six charts
proposed for wedge, all eleven charts were sub-
jected to both machine positioning defect devia-
tions and wedge defect deviations. This pro-
vided a wide variety of testing conditions and
allowed testing of chart by defect interactions.

RESULTS

Proposed charts for machine
positioning problems

The in-control performance of the X-bar
charts for individuals (X-barind, Eq. (3)) and
groups (X-bargrp, Eq. (6)) is shown in Fig. 4(a)
by saw configuration, with G � 1 correspond-
ing to X-barind. The expected proportion of out-
of-control signals is shown as a reference line
drawn at 0.27%, which corresponds to the ARL
of 3-sigma control charts under the assumption
of normality. While the number of out-of-
control signals by subgroup size varied, the
overall average was on target at 0.3%, and there
was no consistent trend or pattern by saw con-
figuration or subgroup size.

5 Professor, Department of Mechanical Engineering, The
University of British Columbia, and Wood Machining Sci-
entist, Forintek Canada Corporation, respectively (Vancou-
ver, B.C. Canada).

TABLE 3. Investigated ranges of defect severities.

Defect Parameter Range (mm)† Range (inches) †

Machine positioning 
m ±0.25, 0.50, 0.75, 1.00 ±0.010, 0.020, 0.030, 0.040
Wedge 
w ±0.25, 0.50, 0.75, 1.00 ±0.010, 0.020, 0.030, 0.040

† This amount is added to both sides of the board, making the effective change in board thickness two times the range.
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6 The following abbreviations are used in figures
throughout the remainder of this paper: BB�Bandsaw-
Bandsaw Saw Configuration, BC�Bandsaw-Chipper-head

Saw Configuration, CB�Chipper-head-Bandsaw Saw Con-
figuration, RR�Circular saw-Circular Saw Configuration,
BB-1�Side 1 of BB Saw Configuration, BB-2�Side 2 of
BB Saw Configuration, etc.

FIG. 4. Percent out of control for (a) X-barind (G � 1) and X-bargrp charts, (b) MR� (G � 1) and R�grp
charts, and (c)

S� chart, by subgroup size (G) and saw configuration6.
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The in-control results for the MR� and R�grp

charts (Eqs. (9) and (11), respectively) are shown
in Fig. 4(b) (with G � 1 corresponding to the
moving range chart). The expected number of
out-of-control signals is shown as a reference
line at 0.2%, which corresponds to the ARL of
the closest values available for the cumulative
range distribution (Harter 1960). On average, the
number of simulated out-of-controls was 0.25%.
There was no obvious consistent trend by num-
ber of boards per subgroup or saw configuration.

Results for the S� chart (Eq. (13)) using in-
control simulations are shown in Fig. 4(c). This
chart was affected by group size, performing
best with moderate group sizes. At most group
sizes, the number of out-of-control signals was

well above the reference line for the expected
number of out-of-controls (0.27%). This behav-
ior was likely a result of the Satterthwaite pro-
cedure being applied outside of its recom-
mended range.

“Power curves” for the X-barind and X-bargrp

charts for simulated BB boards are shown in Fig.
5(a) by subgroup size (with X-barind shown as G
� 1). These curves show the power of the chart
to detect machine positioning deviations over
various values of 
m. Since the response of the
chart to negative and positive values of 
m was
almost identical, only positive values are shown.
It is not surprising that the chart with the largest
subgroup size had more out-of-control signals at
a smaller level of deviation, since this chart was

FIG. 5. Percent out of control size of simulated machine positioning deviation (
m) for X-barind (G � 1) and X-bargrp

charts by (a) subgroup size (G) for Saw Configuration BB, and (b) saw configuration and side (average of all subgroups
is shown).
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updated with information from twenty boards at
a time. The behavior of this chart was similar for
each type of saw configuration (Fig. 5(b)), ex-
cept at smaller deviations, where saw configu-
ration RR was slower to respond.

With the introduction of machine positioning
deviations, the only indication in the MR� and
R�grp

charts was a single out-of-control signal the
first time the deviation was introduced. More-
over, the machine positioning change was
missed by the R�grp

chart entirely unless the de-
viation was introduced mid-subgroup. The S�

chart responded similarly; a single out-of-
control was signaled at the first group with ma-
chine positioning problems only if the deviation
was introduced in the middle of the subgroup.
As in the X-bar charts, charts with larger sub-
groups were more likely to signal, as their con-
trol limits were narrower; however, only one
signal was recorded. These charts produced flat
power curves and are, therefore, not shown.

Proposed charts for wedge

The in-control performance of the R�ind
and

R�grp
charts (Eqs. (16) and (18)) are shown in

Fig. 6(a) (with R�ind
shown as G � 1). The num-

ber of out-of-control signals for the R�ind
and

R�grp
charts averaged 0.1%, slightly lower than

the reference line at the expected value of 0.2%.
The rate of out-of-controls was stable, with no
obvious trend by number of boards per subgroup
or saw configuration.

The results of in-control simulations for the
MR�� and R��grp

charts (Eqs. (20) and (22)) are
shown in Fig. 6(b) by saw configuration and
side, with MR�� shown as G � 1. MR�� and
R��grp

charts were produced for each laser posi-
tion; however, since their performance was
nearly identical by laser, the average perfor-
mance is shown. On average, the number of out-
of-controls was on target with the expected
value, shown as a reference line at 0.2%. Like
the previous chart, there was no obvious trend
by number of boards per subgroup or saw con-
figuration.

The in-control S� chart for between-laser
variation and S�� chart for board × laser inter-

action variation (Eqs. (24) and (27), respec-
tively) are shown in Fig. 6(c) and (d), respec-
tively. The S� chart was greatly affected by sub-
group sizes; it performed very poorly for small
subgroups, but improved with larger subgroups.
This improvement was due to increased degrees
of freedom associated with larger subgroup
sizes. The S�� chart was more stable; the num-
bers of out-of-control signals were more in line
with the expected values, at 0.2% on average.

Power curves constructed for the R�ind
and

R�grp
charts are shown in Fig. 7(a). These charts

responded with more out of controls as the size
of the wedge deviation and subgroup size in-
creased (Fig. 7(a-i)). Because there was a similar
pattern for all saw configurations, the results of
introducing wedge deviations are shown by sub-
group for the BB saw configuration, Side 2 only.
As in the X-bar chart with 
m, results for nega-
tive and positive values of 
w were very similar,
and thus only positive values are shown. As ex-
pected, larger deviations in 
w produced more
out-of-control signals. The average response
over all subgroup sizes is shown to emphasize
the different responses by saw configuration
(Fig. 7(a-ii)); BB saw configurations were more
responsive to increases in 
w, while RR saw
configurations were less responsive.

The results of introducing a wedge deviation
to the S� chart are shown in Fig. 7(b) by devia-
tion size (
w). As shown for in Fig. 7(b-i) with
saw configuration RR, Side 1, these charts var-
ied less by subgroup size. As in the previous
charts, results for negative values of 
w were
similar to those of the positive values, and thus
only positive values are shown. The results for
the S� chart by subgroup were similar within
saw configuration and side, and minimal in com-
parison to the effect of 
w. Thus, results aver-
aged over all subgroups are shown in Fig. 7(b-ii)
by saw configuration and side. As expected,
larger deviations in 
w produced more out-of-
control signals. As in the range charts above, the
results for the RR saw configurations were less
responsive to the size of 
w than those of the
other saw configurations.

The introduction of wedge deviations did not
affect the performance of the S��, MR��, or
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FIG. 6. Percent out-of-control by subgroup size (G), saw configuration, and side for (a) R�ind
(G � 1) and R�grp

charts,
(b) MR�� (G � 1) and R��grp

charts, (c) S� chart, and (d) S�� chart.
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FIG. 7. Percent out-of-control by size of simulated wedge deviation (
w) for (a) R�ind
(G � 1) and R�grp

charts by: (i)
subgroup size (G) for Saw Configuration BB-Side 2, (ii) saw configuration and side (average of all subgroups is shown),
(b) S� chart by: (i) subgroup size (G) for Saw Configuration RR-Side 1, (ii) saw configuration and side (average of all
subgroups is shown).
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R��grp
charts; because machine positioning devia-

tions were introduced uniformly to each board and
laser position, the differences between laser po-
sitions by board remained the same. In addition,
the introduction of machine positioning devia-
tions did not affect the performance of any of the
charts proposed for wedge. Therefore, out-of-
control results are not shown for these charts.

DISCUSSION

Five charts were evaluated for their adequacy
in detecting machine positioning problems. The
X-barind and X-bargrp charts based on individu-
als and on subgroups, respectively, performed
equally well under in-control conditions. How-
ever, the out-of-control response to specific de-
fects varied by size of subgroup. The X-bargrp

chart was more likely to signal when larger sub-
groups were used, but there is a trade-off in the
amount of time necessary to accumulate larger
subgroups for sampling. Moreover, with larger
subgroup sizes, even the smallest shift in ma-
chine positioning (
m � 0.25 mm) caused the
charts to signal over 50% of the time. Given
normal mill operating conditions, charts con-
structed with large subgroups may be too sensi-
tive. On the other hand, this sensitivity may be
advantageous, as 
m must be sustained through-
out the subgroup to achieve the reported results.

Although the MR� and R�grp
charts performed

well during in-control conditions, a shift in ma-
chine positioning was indicated by a single out-
of-control signal only, and this signal was only
noted if the change occurred mid-subgroup. This
is in line with findings from Woodall et al.
(2000), who, in synthesizing the work of several
authors (Rigdon et al. 1994; Sullivan and Wood-
all 1996), reported that the standard moving
range chart (which is applied to the same data as
the X-bar chart) is not effective in detecting sus-
tained changes in a process. In this type of situ-
ation, a CUSUM chart may be more appropriate.

The S� chart for between-board variation had
similar issues for out-of-control conditions.
Moreover, its in-control performance was poor
and appeared to be affected by subgroup size.
This result was not unexpected, given that the
Satterthwaite procedure works well only when

MS�ij
/MS��ij

> F(G-1,G-1;0.9985)*F(G-1,G-1;0.5) (Gay-
lor and Hopper 1969). This condition is only met
for large values of G, and with only a few types
of saw configurations (e.g., CB-side 1). A simi-
lar result was reported by Maness et al. (2004) in
simulation studies using between-board varia-
tion values in the same range. This indicates that
the S� chart is inappropriate for the variance
components found in typical mill data.

Six charts were evaluated for detecting
wedge. The S� chart met Gaylor and Hopper’s
(1969) condition only when monitoring charts
for saw configuration RR with larger values of
G. On the other hand, the S�� chart performed
more to expectation, on average, as it met the
conditions for every saw configuration and sub-
group size. The S�� chart, however, did not re-
spond well for out-of-control conditions, re-
maining virtually unchanged with the addition of
wedge defects.

Under out-of-control conditions, the MR��

and R��grp
charts did not signal. On the other

hand, the R�ind
and R�grp

charts signaled only
when 
w was >0.5 mm. This response is reason-
able, given the range of normal mill conditions.
On the other hand, the rate at which out-of-
controls were signaled while the process was in
control was slightly lower than expected for
these charts, which may be caused by non-
normality in the profile data (Burr 1967). Since
a slight departure from normality appears to be a
characteristic of these data, adjustments to chart
limits to account for non-normality should be
made if these charts are used operationally.

Under ideal conditions, these methods would
have been evaluated in the field under opera-
tional mill conditions. Thus, a conservative in-
terpretation of these results as tied to this par-
ticular LRS arrangement gives only a “proof of
concept” verification of the methods. On the
other hand, the statistical results are applicable
in a wide sense to SPC data arising from mul-
tiple sources of variation. Therefore, these re-
sults can be interpreted as verifying statistical
methods that can be applied to a large variety of
real-time manufacturing processes.

There are two main purposes of any SPC sys-
tem: (1) to provide a signal when defective prod-
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ucts are being produced and (2) to identify when
processes are performing above expectations
(Maness 1993). The SPC systems discussed in
this paper go far toward serving these purposes.
However, judging if a process is “in-control”
must be a decision tailored to the real-time pro-
cess it is applied to. In the Shewhart sense, a
process is in-control when it is not economical to
look for assignable causes (Tukey 1946, as cited
in Nelson 1999). The implicit assumption in the
research relating to this SPC system is that run
times associated with 3-sigma limits are long
enough for commercial mills. Not only is the
occurrence of false alarms costly, but it also
leads to a distrust of the SPC system. Using
3-sigma limits may give an average run length
(ARL) that is too short for many mills. Consider
the pilot set-up at Canfor’s Upper Fraser Mill
(Upper Fraser, British Columbia, Canada). Typi-
cally, six logs are processed per minute at the
quad-bandsaw. Assuming a Type I error rate of
0.27%, the ARL is 1/0.0027≈ 370, which
roughly translates to one false alarm every hour.
However, there are multiple control charts being
monitored, each with roughly the same possibil-
ity of a false alarm. Assuming that the charts are
independent (which may be a poor assumption),
using two charts increases the Type I error rate
to 0.5%, which reduces the ARL by one half, or
about 30 minutes of processing.

On the other hand, if the process is truly out-
of-control, then out-of-control behavior of the
charts should be sustained. Mill personnel
should consider whether the process is totally
out-of-control and should be stopped, or that the
problem is sporadic and should be investigated
further. The charts work very well if put in this
context. This illustrates the need for mill staff to
carefully consider the derivation of their control
limits. All the charts that have been introduced
in this research could be adjusted to target any
ARL. The choice of an ARL will depend on
balancing the costs of unnecessary shut down
and the costs of producing faulty product.

CONCLUSIONS AND RECOMMENDATIONS

Of the five charts presented for detecting ma-
chine positioning problems, the best-performing

charts were the X-bar charts, using limits based
on the components of variance of the statistical
model. The X-barind chart provided adequate in-
control performance, and was not overly sensi-
tive to minor changes in machine positioning
deviations. Therefore, it is recommended for use
in real-time SPC.

Of the six charts presented for detecting
wedge, the range charts for laser position aver-
ages (R�ind

and R�grp
) are recommended, as their

out-of-control performance was not overly sen-
sitive and they gave consistent out-of-control
rates over all subgroup sizes. However, these
charts tended to signal at a rate slightly lower
than the expected 0.2% rate, which was likely
due to non-normality in the data. Further study
should be made to quantify this difference and
adjust the values of D0.001 and D0.999 that are
used with this chart accordingly.

Other sawing defects, such as snake, taper,
and snipe also occur frequently in production
mills; however, summary board data cannot be
used to identify them. Instead, alternative con-
trol charting techniques need to be considered to
best identify their unique qualities. These in-
clude techniques for identifying specific trends
and monitoring the within-LRS variation
(Staudhammer 2004). Research on identifying
these kinds of defects is important to fully take
advantage of the power of real-time data.

Further testing using truly random samples
and field studies would also greatly strengthen
the results given here. While simulations pro-
vide a verification of the statistical methods pre-
sented, mill studies could illuminate the more
practical hurdles in making these charts part of a
working system for a sawmill SPC system.

The use of real-time LRS data is a reality for
many mills today and will likely be more com-
mon in the near future. Systems developers must
update statistical algorithms to take into account
the vastly different data acquired by these de-
vices. Moreover, systems should be designed
with non-traditional control charts to take advan-
tage of the opportunity for better sawing defect
recognition. Recognition of sawing defects will
relate out-of-control signals to specific causes
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and help mills to more efficiently find the source
of quality problems.
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