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Abstract. Determining internal bond strength and thickness swelling after cyclic aging tests in humid

conditions is essential to assess moisture resistance of particle and fiber boards. However, because oper-

ating procedures for these types of tests take at least 3 wk, their use in daily finished product control is

impractical. To solve this problem, an artificial neural network was used as a predictive method to

determine these values from the board properties of thickness, density, and moisture content in conjunc-

tion with thickness swelling and internal bond strength values obtained before the aging cycle. Using 113

boards, an artificial neural network was designed consisting of two separate feedforward multilayer

perceptrons applying the hyperbolic tangent as the transfer function. Training was conducted through

supervised learning after the input data had been normalized. In the testing group, the network attained a

determination coefficient of 0.94 for internal bond strength and 0.92 for thickness swelling.

Keywords: ANN, internal bond strength, swelling, artificial neural network, particleboard, fiberboard.

INTRODUCTION

Moisture-resistant particle and fiber board, nor-
mally manufactured with urea–melamine–form-
aldehyde at a ratio of 15-20% melamine to
urea, is used for demanding exposures requiring

extensive quality control (Esteban et al 2002).
Current European regulations stipulate that both
types of board must pass testing for internal
bond strength and thickness swelling after the
aging cycle specified in the UNE-EN 321 stan-
dard (AENOR 2002). However, the 3-wk dura-
tion of this cycle makes the testing standard
impractical in board production control. The* Corresponding author: luis.garcia@upm.es
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delay in obtaining results from testing is prob-
lematic for the manufacturing industry in gen-
eral (Morris et al 1994) and the wood-based
panel industry in particular (Cook et al 2000).
This makes it important to devise a method
to relate results obtained after the aging cycle to
board properties that are easier and quicker to
measure.

One of the most commonly used predictive
methods in several fields of science is the artifi-
cial neural network (ANN), a mathematical
structure that attempts to imitate the function-
ing of the brain. ANNs consist of several
interconnected neurons structured in a series of
layers. The input layer receives the signals from
the exterior and is responsible for sending them
to the inner layer. The inner or hidden layer
performs the calculations required to obtain the
output. Lastly, the output layer shows the results
obtained by the network. ANNs are capable of
extracting knowledge from a series of sampling
data and applying it to unknown data. The
knowledge extracted is stored in connections
between the different neurons that make up the
network (Priore et al 2002).

There is no set rule as to how many neurons the
hidden layer should have or whether it should
include a single or more than one sublayer. The
only guidelines are recommendations on the
number of neurons the ANN should have in
relation to the data available (Sha 2007) and
that the network should be pyramidal (Vanstone
and Finnie 2009). Therefore, the only way to
obtain the hidden layer is by trial and error
(Lin and Tseng 2000). A further consideration
is that a structure with few neurons may not
be capable of generalizing appropriately and,
conversely, that having an excessive number of
neurons does not greatly improve the network
but rather makes learning more difficult (Cheng
1995).

The nature of ANNs as universal approximators
(Hornik et al 1989; Hagan et al 1996) makes
them a very useful tool for modeling processes
in which obtaining a result from the initial data
is more important than the relations between the

variables involved (De Veaux and Ungar 1997).
Major advances have been made with the use of
ANNs in recent years in industrial process con-
trol, mainly because they are capable of model-
ing complex relations that conventional systems
are unable to do and can adequately predict
whether the characteristics of a product are
in line with specifications (Sukthomya and
Tannock 2005). ANNs have been widely used
to characterize other materials such as cement
(Baykasoğlu et al 2004), concrete (Bilim et al
2009; Özcan et al 2009; Sandemir 2009), and
certain metals (Mukherjee et al 1995; Malinov
et al 2001; Hassan et al 2009; Ozerdem and
Kolukisa 2009; Reddy et al 2009). In the field
of wood they have been used to identify species
microscopically (Esteban et al 2009c), obtain
physical properties (Avramidis and Iliadis 2005;
Avramidis et al 2006), obtain mechanical prop-
erties of sawn timber using physical properties
(Esteban et al 2009a), and to obtain mechan-
ical properties of particleboard using manufac-
turing parameters (Cook and Whittaker 1992;
Cook and Chiu 1997) and physical properties
(Fernández et al 2008; Esteban et al 2009b) to
predict possible production errors without hav-
ing to wait for mechanical tests for bending
strength, modulus of elasticity, and internal bond
strength.

The objective of this study was to design an
ANN capable of predicting internal bond strength
and thickness swelling values of moisture-resistant
particle and fiber board after an aging cycle in
humid conditions using thickness, density, and
moisture content data in conjunction with thick-
ness swelling and internal bond strength values
obtained before the aging cycle.

MATERIAL AND METHODS

Testing

The study used 46 particleboards classified
as P3 in accordance with the UNE-EN 312
standard (AENOR 2004) and 67 fiberboards
classified as MDF.H in accordance with the
UNE-EN 622-5 standard (AENOR 2007). The
boards measured 2440 � 1220 mm and were
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of different thicknesses. The panels were sam-
pled randomly from daily production of two
production lines at a single manufacturing facil-
ity. The adhesive used was urea–melamine–
formaldehyde.

The following tests were performed on all
boards: thickness swelling as per UNE-EN 317
(AENOR 1994a), in which swelling is obtained
after immersion in water at 20�C for 24 h; de-
termination of internal bond strength as per
UNE-EN 319 (AENOR 1994b), in which the
resistance of the panel to a tensile force applied
in the perpendicular direction of the panel faces
is obtained; moisture content as per UNE-EN
322 (AENOR 1994c), in which the moisture
content is determined by drying in an oven to
an anhydrous state; and density as per UNE-EN
323 (AENOR 1994d) followed by determination
of internal bond strength and thickness swelling
after cyclic aging as per UNE-EN 321 (AENOR
2002). The test procedure in this case states that
the test pieces must first undergo the following
cycle three times: submersion in water at 20�C
for 70 h, cooling at –12 to –25�C for 24 h,
drying at 70�C for 70 h, and cooling at 20�C for
4 h. After this treatment, which lasts 3 wk, the
test pieces are reconditioned to constant mass
and the two properties are determined.

For preparation of the test pieces and expression
of results, the standards followed were UNE-EN
325 (AENOR 1994e) and UNE-EN 326-1
(AENOR 1995). The cutting was done in accor-
dance with the requirement that at least one test
piece is taken from the edge of the panel after
trimming and that all the test pieces for a single
test are at least 100 mm apart. Table 1 shows the
number and size of the test pieces required for
each test. All test pieces were conditioned to

constant weight in a conditioning chamber at
20 � 2�C and 65 � 5% RH. The testing equip-
ment used was: 120S Sartorius Analytic balance
with a range of 0-120 g and 0.1 mg scale divi-
sion; Mitutoyo Digimatic digital caliper with
a range of 0-300 mm and 0.01 mm scale divi-
sion; Mitutoyo IDF 1050 thickness gauge with
a range of 0-50 mm and 0.01 mm scale division;
Memmert WNB-29 thermostatic baths with
a range of 10-95�C and 0.1�C scale division;
P-Selecta freezing cabinet with a range of –40-
40�C and 1�C scale division; Heraeus D-6450
oven with a range of 0-300�C and 1�C scale
division; and a Microtest universal testing
machine with a load cell of 5000 N, class 1.

The laboratory is accredited for these tests by
the Spanish Accreditation Entity (ENAC) in
accordance with the standard UNE-EN ISO/
IEC 17025 “General requirements for the com-
petence of testing and calibration laboratories”
(AENOR 2005). All the standards referenced
are European, except UNE-EN ISO/IEC 17025,
which is international.

Artificial Neural Network

For modeling the relations between initial prop-
erties and swelling and internal bond strength
tests after cyclic aging, two separate ANNs (sub-
networks) were designed to improve the per-
formance of each individual network (Sha and
Edwards 2007). The input, or independent, vari-
ables used were thickness, density, and moisture
content of the panels as well as thickness swell-
ing and internal bond strength before cyclic
aging. The output, or dependent, variables were
thickness swelling and internal bond strength
after cyclic aging.

Table 1. Test pieces.

Test Testing standard Test pieces/panel Total test pieces tested Test piece sizes (mm)

Moisture content UNE-EN 322 4 452 50 � 50

Density UNE-EN 323 6 678 50 � 50

Internal bond strength UNE-EN 319 8 904 50 � 50

Thickness swelling UNE-EN 317 8 904 50 � 50

Internal bond strength UNE-EN 321 8 904 50 � 50

Thickness swelling UNE-EN 321 8 904 50 � 50
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A feedforward multilayer perceptron was cho-
sen for the structure of both networks. The
nature of perceptrons as universal function
approximators (Hornik et al 1989; Hagan et al
1996) makes them highly appropriate for model-
ing relations between results of cyclic testing in
humid conditions and initial results. A hyper-
bolic tangent sigmoid function (Eq 1) was used
as the transfer function or neuron processing
function. This is equivalent to the hyperbolic
tangent function and improves network perfor-
mance by producing an output more quickly
(Demuth et al 2002). It is one of the most fre-
quently used functions in the references con-
sulted (Cook and Chiu 1997; Baykasoğlu et al
2004; Avramidis and Iliadis 2005; Avramidis
et al 2006; Fernández et al 2008; Bilim et al
2009; Esteban et al 2009b).

f yð Þ ¼ 2

1þ e �2yð Þ � 1 ð1Þ

f(y) ¼ Output value of the neuron.
y ¼ Input value of the neuron.

To improve the generalizing ability of the
ANNs, the input data were normalized (Sarle
1997; Rafiq et al 2001) in accordance with Eq 2.

y0 ¼ y� ymin

ymax � ymin

ð2Þ

y0 ¼ Value after normalization of vector X.
ymax y ymin ¼Maximum and minimum values of
vector X.

The subnetworks were trained through super-
vised learning (Hagan et al 1996; Haykin 1999).
This was done by dividing the entire data set into
two subgroups chosen randomly without repeti-
tion: the training group (82 data, 73% of the
total) and the testing group (31 data, 27% of the
total). These intervals were within the range of
those used by other researchers in the field of
wood-based boards (Cook and Whittaker 1992;
Cook and Chiu 1997; Fernández et al 2008).

The learning algorithm chosen was the resilient
backpropagation algorithm, because it improves
learning performance in the case of sigmoid

transfer functions (Demuth et al 2002). To avoid
the problem of network overfitting, the early-
stopping method was chosen. Overfitting is
observed as a decrease in the training group
error coupled with an increase in the testing
group error, indicating that the network is
adapting perfectly to the training group data but
has lost the ability to generalize (Hagan et al
1996; Haykin 1999). To design the structure of
the inner layer of the network and avoid
overfitting, a specific MATLABW language pro-
gram was developed using the Neural Network
ToolboxW Version 4.0.2 from the MATLABW

Program Version 6.5.0, Release 13. This pro-
gram generates successive perceptrons with dif-
fering numbers of neurons in the inner sublayers
and assesses the ability of each perceptron
to generalize by comparing the evolution of
the training and testing group errors every
100 epochs. The training process in each net-
work was regarded as finished when an increase
in the testing group error occurred in conjunc-
tion with a decrease in the training group error.
Lastly, the program assessed the different net-
works obtained and selected the one best
adapted to the desired result (Fig 1).

Figure 1. Pseudocode of the optimization program for the

hidden layers of the multilayer perceptron.
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The correlation coefficient (R) and prediction
error (E%) (Eq 3) were used to assess the struc-
ture chosen. The subnetworks obtained were
regarded as correct if they met the condition
R > 0.70 specified in the UNE-EN 326-2 stan-
dard (AENOR 2001) used to accept test results
obtained by nonstandard test methods and if E%
<15% (Cook and Chiu 1997; Malinov et al
2001).

E% ¼ 100 � Vpred � Vobs

� �

Vobs
ð3Þ

E% ¼ Prediction error.
Vpred ¼ Value predicted by the network.
Vobs ¼ Test value observed.

RESULTS AND DISCUSSION

Tables 2 and 3 show the test results for all boards.
Not all of the panels met the specifications of the
testing standards. The best structures obtained for

both subnetworks had two sublayers in the hid-
den layer. For the property of internal bond
strength, the sublayers had 6 neurons each and
had 8 and 4 for swelling (Fig 2).

The number of data available for training was
slightly lower than Sha’s recommendation (Sha
2007) for mathematically defining the network,
although the aim was to obtain a network capa-
ble of generalizing appropriately from the input
data rather than create a unique network in
which all the parameters were fully defined
(Tompos et al 2007).

The training process results for the two subnet-
works and the correlations obtained between the
observed and predicted values are shown in
Table 4 and Fig 3.

The numerical results and the classifications
(correct/incorrect) of the tests for the ANN test-
ing process are shown in Tables 5 and 6.
Table 7 and Fig 4 show the correlations in the

Table 2. P3 particleboard test results.

Thickness (mm) Number of panels

Density (kg/m3) UNE-EN 323 Moisture content (%) UNE-EN 322

x s Minimum Maximum x s Minimum Maximum

10 1 776 — 776 776 10.8 — 10.7 10.8

16 15 688 24 662 731 10.3 0.6 9.6 11.7

18 2 695 12 687 703 10.3 0.2 10.2 10.5

19 9 694 47 641 808 10.1 0.4 9.2 10.4

22 10 676 25 624 716 10.2 0.6 8.8 11.4

25 4 663 14 648 681 10.7 0.6 10.3 11.6

30 5 655 13 639 675 10.0 0.5 9.39 10.5

Thickness swelling (%) UNE-EN 317 Internal bond strength (N/mm2) UNE-EN 319

Thickness (mm) Number of panels x s Minimum Maximum x s Minimum Maximum

10 1 4.7 — 4.7 4.7 1.39 — 1.39 1.39

16 15 4.5 1.8 2.2 9.3 0.89 0.12 0.62 1.14

18 2 10.2 4.4 7.1 13.3 0.74 0.03 0.72 0.76

19 9 6.2 3.7 1.7 10.7 0.91 0.23 0.72 1.46

22 10 6.5 2.9 2.1 10.5 0.80 0.09 0.65 0.92

25 4 7.0 3.6 3.6 10.7 0.83 0.06 0.78 0.90

30 5 7.5 2.5 3.8 10.7 0.64 0.10 0.54 0.76

Thickness swelling (%) UNE-EN 321 Internal bond strength (N/mm2) UNE-EN 321

Thickness (mm) Number of panels x s Minimum Maximum x s Minimum Maximum

10 1 7.2 — 7.2 7.2 0.85 — 0.85 0.85

16 15 8.3 2.2 2.7 12.3 0.48 0.12 0.27 0.70

18 2 14.9 0.1 14.8 15.0 0.35 0.01 0.34 0.35

19 9 8.5 3.5 3.1 13.2 0.48 0.15 0.37 0.83

22 10 10.1 3.1 6.1 14.8 0.38 0.10 0.19 0.57

25 4 10.0 3.0 6.8 13.1 0.30 0.11 0.15 0.41

30 5 10.2 3.8 4.0 13.3 0.27 0.07 0.18 0.36
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testing groups between the observed and pre-
dicted results. All test results were correctly
classified by the ANN in relation to their test
value except one, which was Panel 4 in the
thickness swelling test (Table 5). These data
would, however, fit the specifications laid
down in the standard UNE-EN 326-2 (AENOR,
2001) for nonstandard methods, which estab-
lishes a minimum correlation coefficient (R)
of 0.70.

The values of the determination coefficient (R2)
for the testing groups were 0.94 (internal bond
strength) and 0.92 (thickness swelling), which

means that the networks obtained were capable
of explaining 94 and 92% of the test values
observed (Table 7). The correlation coefficients
obtained from the testing groups were higher
than those obtained by other authors (0.85-0.90)
when applying ANNs to wood-based boards
(Cook and Whittaker 1992; Cook and Chiu
1997; Fernández et al 2008). They were also
higher than the correlation coefficient found
on applying an ANN to predict the results of a
long-term test for another product, ie the stan-
dard 28-da compressive strength test used for
the characterization of cement properties (R ¼
0.83) (Baykasoğlu et al 2004).

Table 3. MDF.H. fiberboard test results.

Thickness (mm) Number of panels

Density (kg/m3) UNE-EN 323 Moisture content (%) UNE-EN 322

x s Minimum Maximum x s Minimum Maximum

10 1 771 — 771 771 8.5 — 8.5 8.5

12 1 785 — 785 785 7.7 — 7.8 7.7

16 9 737 14 713 759 8.0 0.6 7.2 8.8

18 7 744 41 685 796 7.8 0.2 7.4 8.1

19 17 746 42 689 850 8.0 0.5 7.5 9.1

22 11 713 36 656 766 8.1 0.6 7.0 9.1

25 5 675 63 581 712 8.2 0.8 7.2 9.0

28 1 750 — 750 750 7.6 — 7.6 7.6

30 11 689 15 666 711 8.4 1.0 7.3 10.4

35 4 688 17 665 705 8.8 0.7 7.8 9.4

Thickness (mm) Number of panels

Thickness swelling (%) UNE-EN 317 Internal bond strength (N/mm2) UNE-EN 319

x s Minimum Maximum x s Minimum Maximum

10 1 9.5 — 9.5 9.5 1.12 — 1.12 1.12

12 1 6.5 — 6.5 6.5 0.84 — 0.84 0.84

16 9 4.8 1.6 0.9 6.2 0.94 0.14 0.78 1.19

18 7 4.4 1.4 2.5 6.6 1.26 0.35 0.84 1.77

19 17 4.4 1.1 2.4 6.1 1.10 0.28 0.79 1.65

22 11 3.0 0.6 1.9 4.1 1.15 0.28 0.78 1.65

25 5 8.2 10.4 2.2 23.7 1.13 0.15 0.92 1.26

28 1 4.1 — 4.1 4.1 0.83 — 0.83 0.83

30 11 3.3 1.0 1.6 4.9 1.16 0.25 0.76 1.47

35 4 3.6 0.9 2.7 4.7 1.10 0.20 0.85 1.35

Thickness swelling (%) UNE-EN 321 Internal bond strength (N/mm2) UNE-EN 321

Thickness (mm) Number of panels x s Minimum Maximum x s Minimum Maximum

10 1 6.8 — 6.8 6.8 0.51 — 0.51 0.51

12 1 8.5 — 8.5 8.5 0.28 — 0.28 0.28

16 9 8.2 2.3 4.4 11.6 0.56 0.17 0.30 0.74

18 7 8.7 3.4 3.8 12.7 0.47 0.31 0.12 0.98

19 17 6.8 2.8 2.4 10.9 0.58 0.24 0.13 1.06

22 11 5.8 3.0 2.4 11.6 0.50 0.28 0.12 1.01

25 5 6.4 3.5 2.2 10.0 0.42 0.26 0.15 0.77

28 1 14.0 — 14.0 14.0 0.28 — 0.28 0.28

30 11 6.8 2.3 4.0 11.6 0.37 0.17 0.15 0.61

35 4 7.0 2.7 3.6 10.2 0.39 0.20 0.24 0.69
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The R values of both networks were also higher
than the requirements of the UNE-EN 326-2
standard (AENOR 2001) for accepting results
obtained by nonstandard test methods (R >
0.70). Moreover, the prediction error results of

the two networks were lower than the specifica-
tions of Cook and Chiu (1997) and Malinov et al
(2001), who established 15% as acceptable and
20-30% as rejects. Therefore, because the two
initial conditions were fulfilled, the network

Figure 2. Neural network structure for (a) internal bond strength test and (b) thickness swelling test after cyclic aging.
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Figure 3. Correlation between observed and predicted values in the training group for internal bond strength and thickness

swelling after cyclic aging.

Table 4. Training process results.

Subnetwork Property Network structure R Linear regression model x E (%)

1 Internal bond strength [5 6 6 1] 0.97 y ¼ 0.934�x þ 0.032 10.26

2 Thickness swelling [5 8 4 1] 0.95 y ¼ 0.914�x þ 0.672 11.07

Table 5. Numerical results and test classifications in the ANN testing process for the thickness swelling test.

P3 particleboard MDF. H fiberboard

Panel no.

ANN Test

Panel no.

ANN Test

Mean (%) Result Mean (%) Result Mean (%) Result Mean (%) Result

1 9.4 Correct 8.9 Correct 16 7.6 Correct 6.9 Correct

2 17.7 Incorrect 14.8 Incorrect 17 2.4 Correct 2.4 Correct

3 13.4 Incorrect 12.3 Incorrect 18 2.0 Correct 2.2 Correct

4 10.3a Correct 12.3 Incorrect 19 12.5 Correct 11.6 Correct

5 10.5 Correct 9.9 Correct 20 10.4 Correct 9.2 Correct

6 3.2 Correct 3.1 Correct 21 8.1 Correct 7.9 Correct

7 3.2 Correct 2.7 Correct 22 7.4 Correct 8.8 Correct

8 4.3 Correct 4 Correct 23 2.3 Correct 2.4 Correct

9 5.8 Correct 7.2 Correct 24 3.2 Correct 3.1 Correct

10 8.5 Correct 10.5 Correct 25 9.9 Correct 8.5 Correct

11 7.8 Correct 7.2 Correct 26 7.3 Correct 8.4 Correct

12 11.4 Correct 11.3 Correct 27 5.8 Correct 6.5 Correct

13 12.0 Correct 12 Correct 28 4.9 Correct 5.7 Correct

14 10.6 Correct 9.1 Correct 29 4.1 Correct 3.9 Correct

15 7.5 Correct 7.6 Correct 30 6.1 Correct 7.2 Correct

31 12.2 Correct 10.2 Correct
a Letters in bold indicate erroneous classifications by the ANN.

ANN, artificial neural network.
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Table 6. Numerical results and test classifications in the ANN testing process for the internal bond strength test.

P3 particleboard MDF. H. fiberboard

Panel

ANN Test

Panel

ANN Test

Mean (N/mm2) Result Mean (N/mm2) Result Mean (N/mm2) Result Mean (N/mm2) Result

1 0.65 Correct 0.56 Correct 16 0.57 Correct 0.60 Correct

2 0.21 Correct 0.19 Correct 17 0.54 Correct 0.63 Correct

3 0.29 Correct 0.35 Correct 18 0.28 Correct 0.33 Correct

4 0.18 Correct 0.18 Correct 19 0.44 Correct 0.38 Correct

5 0.40 Correct 0.40 Correct 20 0.44 Correct 0.48 Correct

6 0.91 Correct 0.83 Correct 21 0.33 Correct 0.33 Correct

7 0.77 Correct 0.70 Correct 22 0.50 Correct 0.58 Correct

8 0.42 Correct 0.36 Correct 23 0.49 Correct 0.55 Correct

9 0.42 Correct 0.49 Correct 24 0.99 Correct 1.06 Correct

10 0.38 Correct 0.42 Correct 25 0.31 Correct 0.28 Correct

11 0.93 Correct 0.85 Correct 26 0.14 Correct 0.15 Correct

12 0.35 Correct 0.30 Correct 27 0.78 Correct 0.66 Correct

13 0.13 Correct 0.15 Correct 28 0.79 Correct 0.68 Correct

14 0.22 Correct 0.27 Correct 29 0.95 Correct 1.01 Correct

15 0.49 Correct 0.45 Correct 30 0.65 Correct 0.6 Correct

31 0.35 Correct 0.42 Correct

ANN, artificial neural network.

Table 7. Testing process results.

Subnetwork Property R R2 Linear regression model x E (%)

1 Internal bond strength 0.97 0.94 y ¼ 1.02�x – 0.006 11.17

2 Thickness swelling 0.96 0.92 y ¼ 1.07�x – 0.381 10.10

Figure 4. Correlation between observed and predicted values in the testing group for internal bond strength and thickness

swelling after cyclic aging.
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designed to obtain thickness swelling and inter-
nal bond strength after cyclic testing as per
UNE-EN 321 (AENOR 2002) using initial data
of thickness, density, and moisture content in
conjunction with internal bond strength and
thickness swelling values obtained before cyclic
aging can be regarded as valid for the intended
purpose.

CONCLUSIONS

1. The results of the neural network designed
for this study were very close to data
obtained by testing with determination coef-
ficients higher than 90% in the two subnet-
works.

2. These findings show the ability of ANNs to
obtain moisture resistance results of particle
and fiber boards under cyclic testing using
initial data without the need for cyclic aging.

3. This study extends the fields where ANNs
can be used in the wood-based board indus-
try, making ANNs an important addition to
in-factory testing.

4. Use of these networks will enable results of
long-term testing to be predicted with a high
degree of reliability, thereby anticipating
problems directly affecting the moisture
resistance quality of boards.
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