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ABSTRACT

This paper focuses on the application of statistical process control principles to monitor the lumber kiln-
drying process through the use of innovative quality control charts. Three Lognormal control charts are pro-
posed to monitor quality characteristics that follow a three-parameter Lognormal statistical distribution. The
first two control charts, called the “scale chart” and the “chart for geometric means,” monitor the central ten-
dency of the process. The third chart, called the “shape chart,” monitors the process variability. Practical
procedures are presented for calculating center lines and control limits, and for plotting the data on the
charts. A rationale is given for using geometric means rather than arithmetic means for assessing process’
central tendency. The choice of parameters to be monitored on control charts, along with parameter estima-
tion issues, are discussed. A succinct comparison with the customary “Normal” charts is also included. The
methods presented were tested on a data set of Douglas-fir (Pseudotsuga menziesii) lumber collected from a
production facility in British Columbia, Canada, for which the statistical distribution of moisture content

measurements was determined to be well modeled by a three-parameter Lognormal distribution.
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INTRODUCTION

One of the most effective ways to improve
consistency in kiln-drying is to monitor the vari-
ability of moisture content (MC) in lumber. It is
known that moisture content of lumber varies
considerably among boards in a kiln charge, and
this can happen mainly because of natural vari-
ability in drying rate, initial moisture content,
sapwood and heartwood, wet pockets in lumber,
and variability of drying conditions in different
parts of the kiln.

The variability of moisture content can be
monitored using statistical process control
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Quality control charts, statistical process control, lumber moisture content, Lognormal distri-

(SPC). The essential idea of SPC is to continu-
ously improve the quality of a process through
the constant application of statistical methods to
control that process. A major goal of SPC is to
detect the occurrence of any assignable causes of
disturbances in the process as soon as possible so
that investigation of the process and corrective
action can be taken before nonconforming
products reach the final stage of the process.
This may be done through the use of control
charts (Shewhart 1931; Deming 1986; Young
and Winistorfer 1999).

The parametric control charts used in SPC are
based on the knowledge of the underlying statis-
tical distribution of the data and the assumption
is that the data are approximately Normally dis-
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tributed. If the process shows evidence of a sig-
nificant departure from normality, then the con-
trol limits calculated may be inappropriate. The
moisture content of kiln-dried lumber does not
appear to be well modeled by a normal distribu-
tion (McMahon 1961). Some authors (McMahon
1961; Ristea and Maness 2003) suggest that the
Lognormal distribution may offer a good model
for the moisture content. Ristea and Maness
(2003) described formal numerical methods for
determining the distribution of moisture content
in kiln-dried lumber. Lognormal control charts
were discussed by Ferrell (1958), Morrison
(1958), and Joffe and Sichel (1968).

Ferrell (1958) proposed a control chart for
monitoring the “geometric midrange,” which
was defined as the Lognormal equivalent of the
arithmetic midrange from a Normal distribution
(half the sum of the largest and smallest data val-
ues). However, the author used an equivalent to
the “3-sigma” limits for the geometric midrange
without validating the distribution of the param-
eter. This control chart was developed only for
the two-parameter Lognormal. No chart for
monitoring process dispersion was discussed.

Morrison (1958) suggested two control charts
for monitoring the sample mean and the sample
ratio, respectively. However, the limits of these
control charts apply only to the two-parameter
Lognormal. Also, the measuring units of the con-
trol charts were not in the original scale of mea-
surement of data, so the interpretation of these
charts by mill personnel may be difficult.

Joffe and Sichel (1968) used the arithmetic
mean to sequentially test hypotheses about the
mean of a Lognormal distribution. The proce-
dure was an acceptance sampling plan for attri-
bute data, and was intended to be used for the
inspection of the final product rather than for a
real-time monitoring. Also, the procedure ap-
plies only to the two-parameter Lognormal.

Statistical process control in lumber drying

Quality control methods have been success-
fully applied in many industries. However, the
application of statistical process control in the
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forest products industry, specifically in lumber
drying, lags behind other industries. There are
three primary reasons for this:

1. Technology development in the past has been
based on achieving high production rates of
low-valued products. Product quality was not
a market driver.

2. Wood is a non-homogenous material, and
even when it is kiln-dried under controlled
conditions, the moisture content does not sta-
bilize or become constant throughout the
wood pieces. Due to this large variability,
statistical process control (SPC) methods
based on manually inspecting product do not
work because of the large volume of product
that must be inspected.

3. The mathematical distribution of the mois-
ture content in dried wood is not well under-
stood. Therefore, SPC methods borrowed
from other industries do not work well.

Although process variability is often the most
important parameter to be measured and con-
trolled, many quality control methods suggested
in literature are concerned only with the average
moisture content alone, such as sample estima-
tion of average moisture content for a charge
(Fell and Hill 1980; Rasmussen 1988; Simpson
1991). Other methods are based on “go/no-go”
decision criteria, such as acceptance sampling
(Bramhall and Wellwood 1976; Bramhall and
Warren 1977); and conformance tests (Cheung
1994). These quality control methods help lum-
ber producers to comply with lumber standards,
but they do not help to improve the consistency
of drying processes.

Other methods for checking consistency, al-
though concerned with the variation of moisture
content, did not find practical applicability be-
cause they are based on the often incorrect as-
sumption that moisture content has a Normal
probability distribution (Pratt 1953, 1956;
Bramhall 1975; Maki and Milota 1993). This as-
sumption judges the asymmetry and significant
skewness of the MC distribution as a “defect” or
out-of-control situation, when in fact these are
typical outcomes of the drying process.
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McMabhon (1961) proposed Lognormal proba-
bility plotting in conjunction with frequency dis-
tribution analysis as quality control methods.
These techniques were used to estimate the aver-
age moisture content and the percentage of MC
above or below given limits. The methods were
only approximate, however, and the possible
procedural errors were large. Also, the author did
not consider the third parameter of the Lognor-
mal distribution.

METHODS AND MATERIALS

The data used in this study were related
to the data from Ristea (2001) and Ristea
and Maness (2003). The distribution of mois-
ture content was found to follow the three-
parameter Lognormal distribution. Model
validation of verification of the Lognormal dis-
tribution, as well as comparison of probability
plots with Normal and Weibull, are shown in
Ristea (2001) and Ristea and Maness (2003).
Moisture content measurements of kiln-dried
lumber were collected from a process that was
believed to be operating in a state of statistical
control. Specific control limits were proposed
and quality control charts were developed for
Lognormal distributed data, to monitor the pro-
cess average and dispersion. Subsequent sam-
ples collected from later kiln charges were
plotted on the proposed charts, and a compari-
son was made with conventional charts based
on the normality assumption.

Data collection

The lumber used in this study was kiln-dried
Douglas-fir with a nominal section size of 50.8
mm X 101.6 mm (2 in. X 4 in.), and a nominal
length of 1.83 m (6 ft). The lumber came from
two different kiln charges that had the same
species, dimensions, and drying conditions.
Lumber from the first charge was used to deter-
mine the parameters of control charts, and lum-
ber from the second charge was used for
plotting data on the control charts. The boards
were cut in 0.3048-m (1-ft)-long specimens,
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and their moisture content was determined by
oven-drying.

To determine the control limits and centerlines
of the control charts, 20 samples were succes-
sively selected from the first kiln charge. Each
sample contained 50 MC measurements, result-
ing in a total of 1000 measurements. The sam-
pling procedure was “simple random sampling
without replacement.”

To plot moisture content data on the control
charts, 20 samples were successively selected
from the second kiln charge, each sample con-
sisting of 50 MC measurements. The same sam-
pling procedure was used.

Control charts for lognormal data

The methodology for estimating distribution
parameters is presented for the three-parameter
Lognormal distribution, and control charts for
Lognormal data are proposed. The choice of
variables to be monitored on control charts is
also discussed.

Three-parameter lognormal distribution.—
The lognormal distribution function has usually
two parameters, scale and shape, and a lower
bound of zero. Details on this distribution and its
parameters are given in Aitchinson and Brown
(1957), and Crow and Shimizu (1988). The
probability density function for the two-
parameter Lognormal distribution is:

p[ (m(xi uj 1forx>0 0

1 is the mean (scale parameter) of the normally
distributed Y, that is, of logX (-0 < p < %);

o> is the variance (shape parameter) of the nor-
mally distributed Y, that is, of logX; o > 0.

W=1p—e

where:

However, a third parameter—threshold or lo-
cation—must be taken into consideration, be-
cause the distribution of moisture content in
wood has a positive lower bound, always greater
than zero. For kiln-dried lumber, this lower
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bound may be related to the lowest equilibrium
moisture content (EMC), which depends on the
relative humidity and temperature of the sur-
rounding air in the kiln. The three-parameter
Lognormal distribution has the probability den-

sity function
Y 1 1

2
]forx>9>0 )

where:

0 is the threshold parameter,
w is the scale parameter, (-0 < p < )
o is the shape parameter, o > 0.

The cumulative distribution function for the
three-parameter case is (for further details refer
to Aitchinson and Brown 1957, and Crow and
Shimizu 1988):

F(x) = q)(WJfOI‘ x>0 (3)

with ®(z) denoting the standard normal cumu-
lative distribution function.

The three parameter Lognormal distribution
has the mean (Aitchinson and Brown 1957):

a=9+exp(,u+%2] 4)
and variance:
B =exp(2*y+0'2)*(exp(0'2)—l) (5)

It is important to note here that a change in the
value of the parameter 0 affects only the location
of the distribution (and its arithmetic mean), and
it does not affect the variance or the shape (John-
son et al. 1994).

There is a very important connection between
Lognormal and Normal distributions. The Log-
normal distribution in its simplest form may be
defined as the distribution of a variable whose
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natural logarithm obeys the normal law of prob-
ability. In other words, if a variable X is distrib-
uted Lognormal with a threshold parameter 6, a
scale parameter u, and a shape parameter o, then
the variable Y = In(X — 6) has a normal distribu-
tion with mean wu and standard deviation o. This
property of the Lognormal is very useful in qual-
ity control work, because the methods of statisti-
cal process control are well known and widely
applied for Normally-distributed variables.

Although many of the properties of the Lognor-
mal may immediately be derived from those of
the Normal distribution, there are certain features
of the former that differ from anything arising in
Normal theory. One example is that the mean and
the variance of the Lognormal distribution are not
parameters of the distribution, contrasting with
the Normal case, where the parameters of the dis-
tribution are the mean and the variance. Another
example is that, when the threshold value is un-
known and it has to be estimated from the sample,
this complicates the estimation procedures devel-
oped for the two-parameter case (Aitchinson and
Brown 1957).

What to monitor on control charts.—SPC con-
trol charts typically use the Normal distribution to
monitor process average and process dispersion.
The process average is checked with a control
chart for sample means, and the dispersion is usu-
ally monitored with a control chart for either sam-
ple standard deviations or sample ranges. For
Normally-distributed data, the mean and the stan-
dard deviation are parameters of the distribution,
and are measures of central tendency and disper-
sion, respectively. In contrast, for Lognormal data,
the mean, standard deviation, and variance are not
parameters of the distribution. One question that
arises for Lognormal variables is: what parameters
should be monitored on the charts to control the
central tendency and variability of the process?

One approach would be to monitor the aver-
age and the standard deviation of the moisture
content, which is a standard practice in quality
control applications. For large samples, conven-
tional control charts for sample averages could
be constructed regardless of the Lognormal as-
sumption, because of the central limit theorem,
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which makes sample averages to be approxi-
mately Normally distributed with increasingly
larger samples. However, the distributions of the
standard deviation and the variance of a Lognor-
mal variable are not well known, so conven-
tional methods such as “3-sigma” or probability
limits cannot be efficiently employed here.

This paper proposes another approach, which is
to monitor directly the scale and shape parameters
of the three-parameter Lognormal distribution.
This consideration is based on the close relation-
ship between the Lognormal and the Normal dis-
tributions. As it was discussed earlier, if a variable
X is distributed Lognormal with a threshold pa-
rameter 6, a scale parameter u, and a shape pa-
rameter o; then the variable ¥ = In(X — 6) has a
normal distribution with mean u and standard de-
viation ¢. Monitoring the mean and standard de-
viation of the Normal variable Y would actually
control the scale and shape parameters of the Log-
normal variable X. The threshold parameter
would not be monitored directly with a specific
chart. However, inferences could be made about a
change in the threshold value from the other two
charts. For example, if a shift in the scale parame-
ter occurs, it could be an indication that the
threshold value also changed, especially if the
shape remains the same.

Suppose that the moisture content X is distrib-
uted Lognormal with known threshold, scale,
and shape parameters. If x,, x,, ... x, is a sam-
ple of size n, we transform it to Normality, by
subtracting the value of 6 from all x; and then
taking the natural logarithm:

In(x, -6) =y, (6)

According to the definition of the Lognormal
distribution, the new variable Y is distributed
Normal with mean u and standard deviation o.
The average of the transformed sample is:

Vi+Y,+...ty,
. (7

It is known that y is Normally distributed with

y:

mean w and standard error -, for moderately

n

large sample sizes (Montgomery 1997). The
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conventional “3-sigma” control limits and the cen-
ter line for a control chart for sample means y are:

(o
UCLy = u+3%—
N ,u \/;
Center Liney = (8)
(o
LCLy=u-3*—
N=H '\/;

The subscript “N” in Eq. (8) refers to the fact
that the control limits are developed for Normal
distributed data.

In practice, the parameters of the Lognormal
distribution 6, u, and o, are not known, a priori.
Therefore, they must be estimated from prelimi-
nary samples taken when the process is thought
to be in-control. The following section discusses
parameter estimation issues for the three-
parameter Lognormal distribution.

Parameter estimation.—The knowledge of the
threshold parameter 6 is critical for the choice of
methods employed to estimate the other two
Lognormal parameters. If the threshold is
known, the estimation methods are well devel-
oped and straightforward. If the threshold is not
known, and it has to be estimated from historical
data, the methods involved in parameter estima-
tion are much more complex.

The threshold is said to be “known” when it
can be determined a priori by reference to the
generating system. The minimum moisture con-
tent that the lumber can possibly have during
drying may be related to the equilibrium mois-
ture content (EMC) in the kiln, which is deter-
mined by the temperature and relative humidity
of air inside the kiln. This assumes, of course,
that all the lumber entering the kiln has moisture
content greater than the initial EMC. However,
in order to force water out of the wood, the dry-
ing schedules are maintained in a way that does
not allow the wood to attain the EMC set by the
schedule, so the threshold parameter may be in-
deed related to EMC, but this relationship is not
known yet. Therefore, the threshold parameter
cannot be determined solely by reference to the
generating system, and it will have to be esti-
mated from samples drawn from historical data.
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The fact that 6 is unknown creates complica-
tions in the estimation of Lognormal parameters.
A great deal of research concerning the three-
parameter Lognormal was published (Crow and
Shimizu 1988). In general, global maximums of
the likelihood function are used to estimate distri-
bution parameters. However, Heyde (1963)
demonstrated that the three-parameter Lognormal
is not uniquely determined by its moments, and
this raised questions about moment estimators.
Also, Hill (1963) has shown that global maximum
likelihood estimators can lead to inadmissible es-
timates regardless of the sample. Therefore, other
estimators have to be used that at least produce
reasonable estimates. As an alternative to global
maximum likelihood estimators (MLE), local
maximum likelihood estimators (LMLE) are gen-
erally accepted for the estimation of the threshold,
scale, and shape parameters, especially for mod-
erately large sample sizes (Cohen 1951; Cohen et
al. 1985; and Crow and Shimizu 1988).

Given a sample of moisture content data, the
first parameter that can be estimated is the
threshold. For an ascending ordered sample x,,
Xy, ..., %, Cohen (1951) proved the following

n’

local maximum likelihood estimator for 6:

-3

{n*iln(xi —0)—n*iln2(xi —0)+

i 1

n 2 n . €))
(zln(xi_e)J :l_nZ*zwzo

1 T x-0

A first approximation 6, < x, is chosen and
F(0,) is evaluated. If F(0,) is zero, then no fur-
ther calculations are required. Otherwise it is
continued until a pair of values 6;and 6, is found
in a sufficiently narrow interval such that F(¢,) >
0 > F(6) or F(6,) < 0 < F(6), and the final esti-
mate 9 is found by mterpolatlon When solving
Eq. (9) for 6, only values for which 0 < 8 < x,
are accepted.

After obtaining the local maximum likelihood
estimate O for the threshold, the estimates for the

165

other two parameters, scale and shape, can be
determined with the following relations (Cohen
1951):

(10)

A

62 :l*zmz(x,. ‘9)_[l*zln(xi _G)T (11)

It can be seen from Eq. (10) that the scale pa-
rameter u is estimated by the sample mean of the
logarithmic-transformed data, In(x — 0).

Sometimes this estimation technique does
not yield a valid result for the threshold, be-
cause local maximums of the likelihood func-
tion do not always exist, especially in small
samples. If this case occurs, the parameters of
the distribution can be estimated from the sam-
ple by an alternative technique, based on modi-
fied moment estimators MME (Cohen et al.
1985).

In practical applications, once the threshold is
calculated for a kiln and a set of conditions, it will
be assumed as constant until further proof that it
has changed. The other two parameters are esti-
mated from each sample using Eqgs. (10) and (11).

Arithmetic mean vs. geometric mean.—It is
known that the arithmetic mean quantifies the
central tendency of Normal variables. When
the observations are not distributed Normal
(but their natural logarithms are), then the geo-
metric mean is a better measure of central ten-
dency. This is true for the two-parameter
Lognormal distribution. For the three-
parameter Lognormal, the central tendency is
determined by the geometric mean minus the
threshold. For the Lognormal variable x, (i =
1,2,...,n), y, = In(x;) is a Normal variable.
With a few algebraic operations, the average of
y; (called y) becomes:

;- iy’;%i(lnx,,)zlln(ﬁnjz

i=1 n

1 (12)
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It is known that

Y
(H%J (13)
i=1
is the geometric mean of x;, (further called
“geomean(x;)”.)
For the three-parameter case, y, = In(x, — ) is
a Normal variable, and the averagey is given by:

y= ln(geomean(xt B é)) (14)

which is equivalent to:

exp(y) geomean(xl 9) (15)
This indicates that the geometric mean of the
moisture content less the threshold should be ac-
tually the entity that is monitored on a chart for
controlling central tendency. Once the parameters
of the underlying distribution are estimated for the
in-control process, the control limits and center
lines of the control charts can be determined.

Control chart for the scale parameter (the
“scale chart”).—The sample scale parameter of
the moisture content can be monitored with the
“scale chart” described in this section. The scale
parameter refers to the three-parameter Lognor-
mal distribution, which it is assumed to be the
underlying distribution of MC. It was shown ear-
lier that the sample scale parameters of the MC
data are equivalent to the sample averages of the
transformed Normal data—the Y variable.

If m samples each of size n are used as prelim-
inary data, and ¥,,y,, . . . ,y,, are the averages of
each Normal sample—identical with the scale
parameter of each Lognormal sample calculated
with Eq. (10)—then the scale parameter of the

Lognormal distribution is given by
Y= +F+ 45, m(16)

Similarly, if S, is the standard deviation of the
it sample, then
S=(S+8,+...+8,)/m (17)

The relationship between the standard devia-
tion (of the Normal variable Y) and the shape pa-
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rameter (of the Lognormal variable X) follows
from the biased maximum likelihood estimator
of the variance ¢? for the Normal variable Y
(Johnson et al. 1994; Montgomery 1997):

i(y,- S5 N (Zylj

S2 i L (18)

n
n n

If we substitute In(x; — ) =y, in (18) the equa-
tion becomes:

n 2 n 2
§% = l*z[ln(x,. _é)] _F*zln(xi —é)} (19)
no no

which is identical in expression with Eq. (11).
However, the standard deviation of the sample,
S, is not an unbiased estimator of . To obtain an
unbiased estimator of o, S must be divided by c,,
a constant that depends on the sample size. For a
detailed discussion about ¢, and its values see
(Johnson et al. 1994; Montgomery 1997). There-
fore, S/c, is to be used for estimating the stan-
dard deviation o of the Normal population,
which is equivalent to estimating the shape pa-
rameter o of the Lognormal population.

Using the common notations for control
charts, the center line and control limits for the
“scale chart” for sample scale parameters are:

S
cuVn

UCL, =y+3*
Center Liney =y

LCLy =y-3*

S
can (20)

where:

n = the size of the samples that will be used for
subsequent plotting;

¥ = estimate of the Normal population mean,
obtained from preliminary data, given by
Eq. (16); it is also an estimate of the Log-
normal population scale parameter;

S = an estimate of the standard deviation of the
Normal population, given by Eq. (17); it is
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also an estimate of the Lognormal popula-
tion shape parameter o,

¢, = a constant that depends on the sample size;
this constant is introduced because S lcy, is
an unbiased estimator of the population
standard deviation.

Control chart for geometric means.—The
chart described above could be used as it is.
However, it will not make much sense to the or-
dinary user, because the values plotted don’t
make much sense in terms of moisture content,
due to the logarithmic transformation. The
“chart for geometric means” is proposed here to
address the problem of plotting the data in the
original scale of measurements. The control lim-
its and center line for the original scale are ob-
tained by taking the antilog by exponentiation
and then adding the threshold. From Y = In(X -
0) it follows that X = 6 + exp(Y), and this rela-
tionship will be used to transform all the results
back to the original scale of measurements.

UCL, y = 6 +exp(UCLy)

Center Line, \ = 0+ exp(Center LineN) (21)

LCL, y = 6 +exp(LCLy)

The subscript “LN” in Eq. (21)refers to the
fact that the control limits are developed for the
Lognormal distributed data. By substituting (20)
in (21) the center line and control limits of the
“chart for geometric means” become:

UCL, =é+exp(§+3* - f/ﬂ
4

Center Line | = 0+ exp(;)
(22)

_p Tk S
LCL, 9+exp(y 3 C4\/;)

Once these control limits are established, they
can be used to monitor subsequent kiln charges
that are obtained under the same drying condi-
tions, for the same type of material and dimen-
sions. To plot a point on the “chart for geometric
means,” a sample x; (i = 1,2,...,n) of MC mea-
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surements is taken, then x; is transformed to a nor-
mal variable y, = In(x, — ). The sample average of
¥, which is y, is then plotted on the “scale chart.”
To plot the corresponding point on the “chart for
geometric means,” y needs to be transformed to
the original scale of measurements, with:

antilog(¥) = 6 +exp(7) (23)

At the first sight, plotting antilog( ¥) on the
“chart for geometric means” seems to be just an
algebraic manipulation. However, it was demon-
strated earlier that exp(y) is in fact the geometric
mean of (x; — 0).

From (15) it follows that the point plotted on
the “chart for geometric means” is:

A

antilog(y) =6+ geomean(xi - 9) (24)

A note should be made here about the pro-
posed name of this control chart, which may in-
correctly suggest to the user that the chart
monitors the actual geometric mean of the mois-
ture content. The entity that is monitored on the
“chart for geometric means” is in fact the geo-
metric mean of, moisture content less the thresh-
old. The threshold is added back later just to give
the right scale to the chart.

It is important to note that, besides the scale of
the plotted data, there are practically no differ-
ences between the “scale chart” and the “chart
for geometric means,” and either one could be
used in practice with equivalent results.

The following is a procedure for constructing
the “chart for geometric means™:

1. For each kiln and set of conditions (species,
type of lumber, stacking method, drying
schedule), collect m random samples of n
moisture content measurements, from when
the process is thought to be in-control, that is,
operating as consistently as it can. It is rec-
ommended that m = 20, and n can be as low
as 5 (Montgomery 1997), but considering
that the number of boards in a kiln is so large,
a reasonably larger sample size is needed.

2. Determine if the moisture content is distrib-
uted Lognormal, using the methods pre-
sented in Ristea and Maness (2003). If the
three-parameter Lognormal is not a good
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model for the data, then the methods pre-
sented here may not be appropriate. This pro-
cedure assumes hereafter that the MC is
distributed Lognormal.

3. From the preliminary data estimate the
threshold parameter using Eq. (9). The
threshold should be estimated from the en-
tirety of preliminary data, instead as aver-
age of sample estimates, because of
estimation problems explained above. With
6 known, the other two parameters are esti-
mated from the transformed samples, using
(16) and (17).

4. Calculate the center lines and the control lim-
its for both charts using relations (20) and
(22). While rational sampling and subgroup-
ing of the data are not discussed here, care
should be exercised to not underestimate
total variation, which can lead to too tight
limits on the scale chart. Equations from (20)
define the ‘“scale chart,” which is used to
monitor the sample scale parameter. Equa-
tions from (22) describe the corresponding
chart in the original scale of measurements,
the “chart for geometric means.”

5. To plot the y data for a subsequent sample of
size n, first normalize x;, by subtracting 6
from each value, and then taking the natural
logarithm, In(x; — 0). Calculate the mean of
the transformed sample, ¥, which is plotted
on the “scale chart.”

6. To plot the corresponding value on the “chart
for geometric means,” the result needs to be
brought back to the original scale of mea-
surements: antilog(y) = 0 + exp(y).

Control chart for the shape parameter (the
“shape chart”).—The third control chart pro-
posed in this paper monitors the sample standard
deviation of transformed data. This chart is just
an adaptation of the customary Normal chart for
standard deviations, and probability limits are
proposed to be used in the construction of this
control chart. Because the shape parameter of
the Lognormal distribution is equivalent to the
standard deviation of the transformed data, this
chart will be called the “shape chart.” The con-
struction of this chart is based on the fact that the
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variance of the Normal variable Y follows a “chi-
square” statistical distribution:

n-1)8>
IfY ~ N(,Lt,O'z), then % ~ Xno (25)

where:

Y  is the normal variable with mean g and
variance 02,
S? is the sample variance, and
2 is the chi-square distribution with n-1 de-
grees of freedom.

A 100(1 — @)% two-sided confidence interval
on the variance is:

(n-1)s*

2 < (I’l - 1)52
2
Za/Z,n—l

)
Xi—ai2,n-1

=0 (26)

where:

le—a/Z,n—l denotes the percentage point of the
chi-square distribution such that

P{Zﬁ—l 2 Zé/Z,n—l} =al2

The control limits for the ‘“shape chart” are
calculated as follows (Montgomery 1997):

= 2
S | Xarn-t
UCLy = o 1
Center Liney = ci
: 27)
< 2
S | Xi—aizn-
LCL., = — . |Z=2/——="""
CLy 4 n-1

where:

S is an estimate of the standard deviation of
the Normal population, given by (17).

The following is a procedure for constructing
the control chart for Lognormal shape parameter,
the “shape chart”:

1. Using the results from steps 1 to 4 of the pro-
cedure above, calculate the center lines and
the control limits using (27).
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TABLE 1. Parameters of preliminary data for control charts
based on the Normal distribution.

Parameter Symbol Value
Estimate of the process average 3 14.484
Biased estimate of process standard

deviation s 1.624

2. To plot a subsequent sample of size n, calcu-
late the standard deviation S of the trans-
formed sample, In(x; — 0), and then plot this
value on the “shape chart.”

RESULTS AND DISCUSSION

The charts proposed in this paper are based on
the assumption that the moisture content reason-
ably follows a three-parameter Lognormal distri-
bution. On the other hand, in many practical
applications the moisture content is assumed to
have a Normal distribution. To demonstrate the
difference between these two approaches, the
control charts are constructed first by assuming a
Normal distribution, and then by applying the cor-
rect Lognormal distribution.

The preliminary data, consisting of 20 sam-
ples of 50 measurements each, was used to esti-
mate the parameters of the Normal distribution,
given in Table 1.

The control limits for the customary control
charts based on the Normality assumption were
calculated with established methods—not pre-
sented here—and are given in Table 2. Three-
sigma limits were employed for the “X bar chart
Normal,” and probability limits were used for
the “S chart Normal”; the charts are shown in
Fig. 1 and Fig. 2. The data plotted on the two
charts came from 20 samples randomly selected
from a subsequent kiln charge with the same
species and drying conditions (see Table 5).

TABLE 2. Control limits and center lines for control charts
based on Normal assumption.

X Bar Chart Normal S Chart Normal
[%] [%]
UCL 15.18 2.12
Center Line 14.48 1.63
LCL 13.79 1.17
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The “X bar chart Normal” in Fig. 1 shows one
point above the upper control limit, the 4th data
point. In the “S chart Normal” (Fig. 2) the 5th
data point is also outside the control limits. If a
practitioner would analyze these charts, without
other knowledge about how the process is per-
forming, would draw the conclusion that 2 out-
of-control situations have occurred, and further
investigation is necessary. However, the process
from which the data were collected was believed
to be in a state of statistical control without any
process shifts or assignable causes, although a
formal investigation into the state of control was
not performed. The out-of-control signals given
by these charts are likely to be just “false
alarms,” or type I errors of the control charts
(concluding the process is out of control when it
is really in control).

The distribution of the experimental data was
found to be well modeled by the three-parameter
Lognormal with parameters summarized in
Table 3.

The control limits for the Lognormal charts
presented in Table 4 were calculated using pro-
cedures described in this paper, and Lognormal
charts were constructed. Figure 3 shows the
“scale chart,” Fig. 4 shows the “chart for geo-
metric means,” and the “shape chart” is shown in
Fig. 5. For a valid comparison between the 2
types of charts (respectively based on Normality
and Lognormality assumptions), the data plotted
on the Lognormal charts came from the same
samples chosen for the Normality assumption.

As expected, the “scale chart” and the “chart
for geometric means” have practically identical
plots, although the scale of measurement is dif-
ferent. This suggests that the analysis of patterns
and sensitizing rules that are found to be valid
for the “scale chart,” could also be applied to the
corresponding ‘“‘chart for geometric means.”
Practitioners may find it convenient to use the
“chart for geometric means” because it shows
the control limits and plotted data in the original
scale of measurements—percentages of moisture
content.

The “chart for geometric means” does not show
any out-of-control signals, in contrast with what
the “X bar chart Normal” reveals. It contains
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X bar Chart (Normal)
15.50 -
2
., 15.00 - \//
3
& 14.50 —
] '\//
2
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Sample number
Fig. 1. “X Bar Chart” for sample averages based on Normality assumption.
S chart (Normal)
2.20 - A
s 170 ot PN
? 120 -
0.70 +— T T - T T T T T — )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sample number
Fic. 2. “S Chart” for sample standard deviations based on Normality assumption.

TABLE 3. Parameters of preliminary data for control charts
based on the Lognormal distribution.

Lognormal variable X

Parameter Symbol Value
Threshold 6 7.48
Scale il 1.92
Shape & 0.23
Number of Samples m 20
Sample size n 50
Normal variable Y

Estimate of the mean of the

transformed data y 1.92
Biased estimate of standard

deviation of the transformed data 5 0.23

other out-of-control indicators, such as four out of
five consecutive points beyond one-sigma, and
eight consecutive points are above centerline.
While it is true that the Sth point on the “chart for

geometric means” is very close to the upper limit,
it is still within the prescribed limits, and will not
produce an out-of-control signal. Except for the
5th data point, these two charts seem to plot the
data in a similar manner. This was anticipated be-
cause the sample averages, which are monitored
on the charts, tend to follow a Normal distribu-
tion, according to the Central Limit Theorem, for
increasingly large samples.

A larger dissimilarity can be seen between the
“shape chart” and the “S chart Normal.” The
“shape chart,” based on the Lognormal assump-
tion, does not show any out-of-control situa-
tions, suggesting what was expected, that the
process is in a state of statistical control. In con-
trast, the “S chart Normal” not only shows an
out-of-control signal, but almost all the other
data points are closer to the upper control limit.
It is apparent that the “S chart Normal” might
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have a tendency to overestimate the variability
inherent in the data, likely due to the Normality
assumption. Moisture content observations in
the upper tail of the distribution are a typical oc-
currence in Lognormal data, and a properly cho-
sen control chart should consider this
accordingly. The control limits of the “shape
chart” are constructed in such a way as to allow

TABLE 4. Control limits and center lines for control charts
based on Lognormal distribution.

Chart for
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for larger variations of MC, which are due to the
inherent positive skewness of the Lognormal
data. On the other hand, the “S chart Normal”
may falsely signal out-of-control conditions,
generating type I errors.

The mathematical calculations presented in this
research may seem cumbersome for a practical
application of these control charts in a mill. How-
ever, as more and more quality control personnel
receive training in basic Statistical Process Con-
trol tools and the use of computers, these calcula-
tions can be performed routinely by simple

Scale Chart Geometric Means ~ Shape Chart ~ Spreadsheet formulations. It is also noted that,
[unitless] [%] [unitless] — while ideally a control chart would allow immedi-
UCL 2.02 15.00 0.29 ate feedback on the drying process, applying SPC
Center Line 1.92 14.30 023 on the freshly-dried lumber is after the fact and
LCL 1.82 13.67 0.16 . .
too late to prevent non-conformances in the kiln.
Scale Chart (Lognormal)
2.05
7 2.00 -
0
2
Z 195 /\A\ /,/\‘\
2 —
o 1.90 - \/
¢§ 1.85 |
1.80 — —r ——
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sample number
F1G. 3. “Scale Chart” for sample scale parameters based on Lognormality.
Chart for Geometric Means (Lognormal)
g
~ 15.00 -
<
3 14.50 \/\/-/\ //\/\\ //\\_
g 14
2 I
2 14.00 - \/
£
2
T - —
1 2 3 4 5 6 7 8 9 10 M1 12 13 14 15 16 17 18 19 20
Sample number

F1G. 4. “Chart for Geometric Means” based on Lognormality.
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Shape Chart (Lognormal)
0.35
7 0.30 -
(]
2 025 //\
3 N . a
3020 \// S~ T T T
©
(-,:, 0.15 -
0.10 ; ; .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sample number
Fic. 5. “Shape Chart” for sample shape parameter based on Lognormality.

TABLE 5: Data points plotted on control charts.

Chart for
X Bar Chart S Chart Geometric Shape
Sample Normal Normal Scale Chart Means Chart
No. [%] [%] [unitless] [%] [unitless]
1 14.91 1.48 1.99 14.80 0.20
2 14.79 1.65 1.97 14.65 0.23
3 14.91 1.74 1.97 14.68 0.24
4 15.23 1.94 2.02 14.99 0.25
5 14.49 2.20 1.92 14.33 0.27
6 14.64 1.78 1.94 14.48 0.23
7 14.70 1.29 1.95 14.54 0.17
8 14.47 1.65 1.92 14.31 0.22
9 14.08 1.73 1.86 13.94 0.24
10 14.38 1.50 1.92 14.27 0.20
11 14.61 1.49 1.94 14.47 0.20
12 14.77 1.41 1.96 14.55 0.19
13 14.49 1.78 1.93 14.38 0.24
14 15.01 1.59 2.00 14.84 0.22
15 14.47 1.48 1.93 14.36 0.20
16 14.48 1.60 1.92 14.27 0.21
17 14.85 1.57 1.97 14.67 0.21
18 14.89 1.77 1.98 14.74 0.23
19 14.76 1.45 1.96 14.55 0.21
20 14.52 1.42 1.92 14.32 0.21

The control charts presented here can be still use-
ful for root cause analysis.

LIMITATIONS OF THE STUDY

The specific numerical data and results of the
study can be applied to Douglas-fir lumber from
the interior of British Columbia, Canada, for
comparable kiln types, drying conditions, and
lumber sizes. However, the methods for con-

structing control charts can be applied to many
practical situations. For each kiln and set of con-
ditions (species, lumber type and size, drying
conditions), the distribution of moisture content
should be first assessed. If the distribution is
proved to be well modeled by the Lognormal,
control limits could then be established using the
calculated distribution parameters, and the charts
proposed here could be used to monitor the pro-
cess average and dispersion.
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CONCLUSIONS

This paper proposed three Lognormal control
charts, two of which are equivalent, to monitor
process central tendency and variability, with
application to the moisture content of kiln-dried
lumber. A rationale was given for using geomet-
ric means rather than arithmetic means for as-
sessing process’ central tendency. Instead of
monitoring sample averages and sample stan-
dard deviations, it was proposed to monitor the
scale and shape parameters of the three-
parameter Lognormal distribution. Moisture
content data were collected from a kiln-drying
process that operated in a state of statistical con-
trol, and it was found to follow a three-
parameter Lognormal distribution. Control
limits and center lines of Lognormal charts were
calculated with the methods proposed in this
paper. The data plotted on the Lognormal con-
trol charts came from a different kiln charge,
which had however the same species, dimen-
sions and drying conditions, and which was also
known to have been operating in a state of sta-
tistical control. When these Lognormal charts
were compared to their customary counterparts
based on the Normal distribution, it was found
that the latter indicated that the process is out-
of-control when it was really in control. Control
charts that are based on the Lognormal assump-
tion are more appropriate to use in cases when
the moisture content has such a skewed distribu-
tion, and especially when monitoring process
variability.

A practical implementation of the proposed
charts is recommended to begin with the as-
sessment of the underlying distribution of
moisture content. If it is concluded that a three-
parameter Lognormal is a proper fit, then the
central tendency and the variability of the dry-
ing process can be monitored with the charts
proposed in this paper. The central tendency
would be monitored with the “scale chart” or
with its equivalent “chart for geometric
means,” which plots the data in the original
scale of measurements. The variability of the
process would be monitored with the proposed
“shape chart.”
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