
IMPROVEMENTS OF THE DYNAMIC PROGRAMMING ALGORITHM
FOR TREE BUCKING

Frangois Grondin
Mathematician

Forintek Canada Corp.
3 19 rue Franquet

QuCbec City
QuCbec, Canada G1P 4R4

(Received June 1996)

ABSTRACT

Log bucking is one of the most important operations in the transformation of trees into lumber. A
bad decision at this stage can jeopardize the optimal recovery in volume or in value. The problem of
optimizing the recovery during the bucking process has been solved using, among other things, dy-
namic programming. This article describes the main approaches and suggests some improvements to
the dynamic programming approach. By introducing certain assumptions into the dynamic program-
ming algorithm formulation, this approach becomes both more realistic and more efficient. The al-
gorithm defined here is used in an integrated bucking-breakdown model. Example simulations dem-
onstrate the computational speed improvements that result from the introduction of the assumptions.

Keywords: Optimized bucking, sawmilling simulation, dynamic programming.

INTRODUCTION

Log bucking is the operation that consists
of cutting trees or stems into smaller logs of
predefined lengths. This operation is necessary
to transform a tree into valuable lumber. Be-
cause log bucking is one of the first operations
of a sawmill, the decisions made at this stage
of the transformation process have profound
influence on the recovery performance of the
mill. The search for a better way to crosscut
stems allows us to increase this recovery.

The problem of subdividing a tree into
smaller logs has been solved using well-
known operational research techniques. One
of these techniques, dynamic programming,
has been used by many researchers during the
last thirty years. However, program developers
have made simplifying assumptions in order
to narrow the search field so that computa-
tional efficiency could be achieved.

In this article, the first log bucking models
will be presented. Emphasis will be placed on

programming algorithm and computer time
comparisons for some examples will complete
this article.

LOG BUCKING MODELS

Models for bucking optimization only

One of the first models involving dynamic
programming was defined by Pnevmaticos and
Mann (1972). The goal of this model was to
maximize the value of a stem by evaluating
the number of logs to cut, their length, their
diameters, and the location of the logs along
the stem. The constraints set by Pnevmaticos
and Mann for their model were:

a) The total length of the logs must be equal
to or less than the initial stem length.

b) The diameter of any log must be within
the limits of the diameters of the remaining
stem.
c) Both log length and diameter must be

within the limits specified by management.

the major difficulties that occur in each case. This model uses some simplifying assump-
Then we will suggest some basic assumptions tions. First, the stem is defined using a trun-
that will be used in the mathematical formu- cated cone. Instead, they could have incorpo-
lation of this problem. A modified dynamic rated real taper formulas for the stem. Then,

Wood and Fiber Science. 30(1), 1998, pp. 91-1W
0 1998 by the Soclety of Wood Science and Technology

92 WOOD AND FIBER SCIENCE, JANUARY 1998, V. 30(1)

the step length used for dynamic programming
is the shortest log length that could be pro-
duced; this means that all other lengths have
to be a multiple of this shortest length.

The major shortcoming of this model ap-
pears in the evaluation of log quality, which
is based on probabilities, and in the estimation
of log value, which incorporates only the
length as a parameter. This model does not
consider that a log should have overlength that
is removed during the trimming operation.

Briggs (1977) improves Pnevmaticos and
Mann's model. In this model, the step length is
defined as the greatest common divisor of ev-
ery length that could be produced, which offers
the possibility to take the trimming overlength
into account. The model does not evaluate log
quality using probabilities, but instead uses
specifications given by sawmillers for maxi-
mum and minimum diameters for each log
class. Log value estimation is calculated based
on the volume for each log dimension using
Smalian's formula.

In his model, Briggs assumes that the stem
is rectilinear. He does not consider defects like
curves in his representation. Also, Briggs'
model optimizes only log or lumber volume
instead of lumber and subproducts value. If
residual or alternate products are highly val-
ued, this model will not prove sufficient.

Briggs (1980) improves his 1977 model to
mitigate these problems. His approach is to
create a general dynamic programming for-
mulation, flexible enough to include any com-
bination of log specifications and constraints
that employs realistic stem quality features.
Log value is evaluated by estimating the value
of the lumber produced. This improves his
1977 model because, in that model, two logs
with the same volume but different shapes
were considered identical. In this model,
Briggs analyzes the impact of defects like
sweep and crook on the optimal bucking so-
lution.

Estimation procedures used by Briggs
(1980) are imprecise. To evaluate log volume,
Briggs uses log scaling techniques that are
quite inaccurate. A mean price is used for the

lumber-for a given grade a 2 in. X 4 in. and
a 2 in. X 6 in. are worth the same. A correc-
tion factor is applied to reduce the optimal so-
lution value, to account for some defects like
curve and crook. For example, the impact of
curve is reduced using the following factor:

Curve Reducing Factor

- -
Maximal Deviation - 2

Small End Diameter - (1)

Please note, this factor does not consider log
length as a parameter. For the same maximal
deviation, the impact of the curve on recovery
is usually greater for shorter logs than for lon-
ger logs.

Eaton (1977), McPhalen (1978), and Geerts
(1979) developed similar models. Bobrowski
(1994) employs another operational research
technique, branch-and-bound, for log bucking
optimization, and compares accuracy and
computer time between this model and another
model using dynamic programming. All those
models are similar in one aspect-they con-
sider the bucking operation independently of
the log breakdown process.

Integrated models including bucking and log
breakdown optimization

An integrated model including bucking and
log breakdown optimization is built in a way
such that the bucking operation must consider
the result of the log breakdown simulation.
Knowing the characteristics of a given log, it
could be worthwhile to evaluate lumber re-
covery using those characteristics. Faaland
and Briggs (1984) developed a model in
which bucking and log breakdown process are
closely related.

In their model, the stem is divided into seg-
ments (steps for the dynamic programming al-
gorithm). Those segments are used to find the
best way to buck the stem in order to maxi-
mize log value. This value is calculated by
another dynamic programming algorithm that
optimizes lumber value for the maximum cyl-
inder included inside the log.

The evaluation of the maximum lumber val-

Grondin-DYNAMIC PROGRAMMING ALGORITHM FOR TREE BUCKING 93

FIG. 1. Longitudinal bucking system with scanner and

ue does not consider that we could produce
pieces shorter than the log length. Further-
more, using a cylinder to estimate optimal
lumber value recovery may not be accurate.

Maness (1989) created a model in which
bucking is optimized by dynamic program-
ming. In his search procedure, the step was
fixed at 24 inches plus one inch of overlength
to reduce calculation time. His model uses a
truncated cone to represent the stem, and the
wane rules for the different grades are not
used during calculations.

In this section, the bucking model using dy-
namic programming developed by Forintek
Canada Corp. (Mongeau and Grondin 1992
and Grondin and Drouin 1995) will be intro-
duced. Bucking and log breakdown process
are integrated: each log created during the

drop gates for optimized bucking on sawmill log deck.

bucking process is transformed by sawmill
simulation. Stems and logs are modeled using
elliptical cross-section representation.

The bucking problem we will define here is
different from the one defined by Pnevmaticos
and Mann (1972). The approach is closer to
the one presented by LCgarC (1994). This ap-
proach was chosen to represent longitudinal
and transverse optimized bucking systems
(Figs. 1 and 2). We suggest, based on sawmill
observations, the following three assumptions:

1) A bucking system, optimized or not, gen-
erally produces logs with fixed lengths, except
for the small end of the stem where the last
(topmost) log may be a different length.

2) A mill can convert shorter logs if they are
at least as long as a given minimum length.
Short logs usually come from the small end of
the stem.

3) For an optimized bucking system, we

WOOD AND FIBER SCIENCE, JANUARY 1998, V. 30(1)

FIG. 2. Transversal buclung system with scanners and drop saws for optimized bucking on sawmill log deck.

must distinguish between the (search) step
length and the shortest length that could be
removed. The step length may be shorter than
the shortest length.

For example, consider the bucking possibil-

FIG. 3. Several alternative bucking possibilities for a
3 1 -foot stem.

ities for a 31-foot stem (Fig. 3). The bucking
system is designed to produce logs 8, 10, 12,
and 16 feet long. The operator may decide to
recover three 10-foot logs or to recover only
two 10-foot logs and one 11-foot log. Or the
operator may choose to keep a 16-foot log and
a 15-foot log if the last one has only a few
defects.

A bucking system should be flexible enough
to handle variable log lengths at the small end
of the stem that usually do not reach a pre-
defined length. According to Fig. 3, if the mill
has a minimum length specification of 8 feet,
alternatives (a) and (c) are not viable. But, if
the same mill admits logs 6 feet long or more,
(a) and (c) should be considered as possible
solutions. Of course, the optimal solution is
closely related to the shape of the stem, to the
lumber that could be produced, and to the op-
timization criterion (volume or value).

The last assumption refers to mechanical

Grondin-DYNAMIC PROGRAMMING ALGORITHM FOR TREE BUCKING 95

limits of any optimized bucking system. Why
should we try to estimate the stem each inch
when the shortest length that is cut to remove
defects is 24 inches? For a longitudinal buck-
ing system (Fig. 1) where gates drop to a com-
ing stem, we would not expect to have a gate
placed 1 inch from the saw. We would also
not expect to see two saws 1 inch apart in a
transverse bucking system (Fig. 2).

This does not mean that we cannot choose
a 1-inch step. Usually the step length is the
greatest common divisor of the bucking length
or any other length that is a divisor of those
lengths. For example, if the bucking lengths
are 99, 124, 149, and 200 inches (8, 10, 12,
and 16 feet plus an overlength), the greatest
step length is 1 inch. If we choose a 1-inch
step, we would evaluate stem value for pre-
defined lengths including a shortest bucking
length used to remove defects rather than for
each step.

Now, let a and b (a < b) be two integer values
describing the starting and ending positions on
the stem of the log segment produced (in num-
ber of steps). Then:

chips(a, b) = chips value of the log seg-
ment with length (b - a)p
I 1, starting at up;

lumber(a, b) = breakdown (lumber + sub-
products) value of the log
segment with length (b -.

a)p 5 1, starting at up;
log-value(a, b) = value of a log segment

with length (b - a)p 5 I ,
starting at up generated by
the bucking system. This
value, evaluated using log
breakdown simulation, is
defined as:

log-value (a, b)

MATHEMATICAL FORMULATION

Assumptions (I), (2) and (3) are the roots
of the dynamic programming algorithm de-
scribed in this article. Using these assump-
tions, we can formulate the recursive mathe-
matical equations for the dynamic program.
First, we must define our variables and our - -

functions:

L = length of the stem
p = step size used in the dynamic pro-

gram
log,,, = minimum log length that can be pro-

cessed in the mill
10 = shortest bucking length; this is the

shortest length that can be produced
by the bucking system

B = {l,,, l , , . . . , 1,) = set of all predefined
bucking lengths; those lengths are
listed from the shortest length I , to
the longest 1, and must be divisible
by p; they correspond to the log
lengths the bucking station can pro-
duce

j = value of the current stage of dynamic
program (in number of steps)

(if a segment is shorter than
minimum length that can be
processed in mill)

I max[lumber(a, b), chips(a, b),',

(if a segment is equal to
or longer than minimum
feasible length)

(2)

We also define:

stem-value(a, b) = value of any segment of
the stem with length (b - a)p I 1, starting at
up. The position a = 0 corresponds to the big
end of the stem.

According to the assumptions (I), (2) and (3),
and using the definitions of log-value(a, b)
and stem-value(a, b), we can build the fol-

96 WOOD AND FIBER SCIENCE, JANUARY 1998, V. 30(1)

lowing recursive dynamic programming algo-
rithm for the stem value:

s tentvalue (0, j)

0
if j = 0;

(initial condition)

(while shortest bucking
length is not reached)

I max {stem-value(0, j - i)
isI(j)

- -
+ log-valueti - i, j))

(while end of stem is
not reached)

max {stem-value (0, j - k)
k t K(j)

+ log-valueti - k, j))

((at the end of stem)

(3)

where I (j) = {i E N I ip E B and i 5 j) is the
set of predefined bucking lengths (in number
of steps) shorter than jp, KU) = {k E N 1 1 I
k I: min(l,lp, j)) is the set of available lengths
(in number of steps) shorter than the minimum
between the greatest bucking length and the
length of the stem, and [x] is the smallest in-
teger greater than or equal to x.

Assumptions (1) and (2) occur during the
evaluation of log-value(a, b). In fact, as long
as dynamic programming does not reach the
small end of the stem, the only lengths that
can be produced are I,,, I,, . . . , 1,. When the
small end is reached, the length of the log seg-
ment can take any value between 0 and 1,. If

the log segment length is shorter than log,,,,
the segment is sent to a chipper and its value
is based on chip revenues. Of course, if length
1, is shorter than log,,,, all segments with
length 1, are automatically converted into
chips. If 1, is greater than log,,,, every seg-
ment will be processed. For each segment, the
algorithm will compare breakdown value and
chip value to determine which is higher for
optimization.

The third assumption (3) occurs in the
equation stem-value(0, j) = -m. Knowing
that 1, is the shortest length that could be
removed from the stem, it is unnecessary to
evaluate a segment that is not at least equal
to 1,. This last assumption is the one that
enables us to significantly increase calcula-
tion speed for reaching the optimal bucking
solution.

PERFORMANCE COMPARISONS

To demonstrate the benefits of using this
algorithm, we will compare calculation
times needed to optimize the bucking pro-
cess for different step sizes (p), different
shortest bucking lengths (I,), and different
minimal log lengths (log,,,). Remember that
this algorithm is employed in a model where
bucking and log breakdown are integrated.
To realize this performance test, a fictitious
mill and a set of lumber products were de-
fined. A short description of the mill is given
in Table 1. Table 2 gives a list of all lumber
products that can be produced. Lumber vol-
ume optimization was tested during the sim-
ulation. The stems used for this test came
from northeastern Quebec. Log diameters
and log centroid positions were collected at
every 3 feet along the stem for each stem.
Elliptical cross-sectional representations of
the logs that consider sweep and crook were
used. Cross-sections were added using inter-
polation at every 6 inches to increase log
representation quality.

Forty-six different bucking optimization
scenarios were simulated using a 486-DX
33Mhz IBM-compatible computer. Because of

Grondin-DYNAMIC PROGRAMMING ALGORITHM FOR TREE BUCKING 97

TABLE 1. Description of the jictitious mill used to demonstrate the tree bucking optimization model.

M a c h ~ n e center
Cutting

Posltlon of the piece

Optimized bucker

Diameter scanner

Line 1

Twin band saw

Centered bulledger

Line 2

Chipper canter

Centered bulledger

Horizontal resaw

Edger

Trimmer

end of piece at origin

sweep up, split taper

left face down, split taper

sweep up, split taper

preceding face down,
split taper

preceding face down,
split taper

preceding position

end of piece at origin

dynamic programming lengths:
195". 147", 123", 99" (test on lo)
192". 144", 120 , 9 6 (test on p)
195", 147", 123", 99" (test on logmin)

sends logs with at least 3.937" at
small end to line 1

opening: 3.75"
sawkerf: 0.145"
number of saws: 3
opening: 1.69"
sawkerf: 0.145"

opening: 2.75"

number of saws: 2
opening: 1 . 6 9
sawkerf: 0.145"

openings: 1.69", 0.875"
sawkerf: 0.145"

openings: 5.75", 3.75"
sawkerf: 0.145"

positions of the saws:
0"-192", 0"168", 0"- 144", 0"-120,
0 - 9 6 , 0"84", 0"72",
0 3 0 , 0-48''

the long time needed for each simulation, 45
stems of different lengths were randomly cho-
sen. Calculation times for the simulations var-
ied between 3 and 30 hours, depending on the
step size (p), length of the minimum bucking
segment (l,), and minimum log length to be
processed (log,,,).

The simulation software used here (see
Mongeau and Grondin 1992 and Grondin and
Drouin 1995) compares each breakdown pos-
sibility and keeps the best. According to the
number of breakdown possibilities, the sim-
ulation may become time-consuming. In this
simulation software, cutting a log corre-
sponds to finding the intersection between a
cutting plane and the log geometrical repre-
sentation. When a log is cut by one saw dur-
ing the simulation, it generates two distinct
pieces and sawdust. To simulate the whole
sawmilling process, the software simulates

each machine in the mill. The piece to cut is
first positioned (for example, a log is placed
"horns down" in front of a twin band saw).
Then, the piece is cut and the resulting pieces
are sent to the next machine. This process
goes on until all pieces reach the sorting table
or the chipper where they are evaluated. If
there are many positioning or cutting possi-
bilities for a machine, every possibility will
be tried and the best one will be kept. Figure
4 gives an idea of the fictitious mill as defined
in the software.

Our goal here is to show with a few ex-
amples the benefits of this improved dynamic
programming algorithm. Lumber volume op-
timization is used in the simulation in order to
avoid building a fictitious price table for the
products and to have more chances to generate
lumber instead of chips (log-value(a, b) =

lumber(a, b) if b - a r logminlp).

98 WOOD AND FIBER SCIENCE, JANUARY 1998, V. 30(1)

TABLE 2. Lumber sizes and wane rules used in example to demonstrate the tree bucking optimization model.

Thickness Widths Lengths
(reallnominal) (reallnominal) (reallnominal)

0.875"/1" 2.75"/3" 4814'
1.690"/2" 3.7Sf'/4" 60"/5 '

5.75"16" 72"16'
Wane rules 84"/7'

plank 96"/8'
Grade thickness (%) width (%) length (%) 108"/9'

0 SO 50 100 120110'
1 75 75 100 132"/11'

2 X 3 & 2 X 4 & 2 X 6 144"112'
Grade thickness (%) width (%) length (%) 156113'

0 25 25 100 168"114'
1 33 50 100 180"/15'
2 50 50 100 192"/16'
3 75 25 100
4 99 75 100

Calculation time and recovery rate
comparisons for a variable shortest bucking

length (1,)
In this section, we want to compare the im-

pact of the shortest bucking length (1,) on cal-
culation time. We set the step value to 3 inch-
es, the minimum length to 72 inches, and the
predefined lengths to 195, 147, 123, and 99.
Those lengths were chosen so that the step
value is the greatest common divisor. We then
compare calculation times for values of lo from
3 to 99 inches by 3-inch step. While I , < 72,
any segment of length lo is automatically sent
to the chipper. Otherwise, this segment would
be considered as a log and would be processed
into the mill. For this reason, the variation of
1,) may have a direct impact on the recovery
rate. This necessitates that we also compare
the lumber recovery and chips percentages for
the simulations.

Figure 5 gives an idea about calculation
time for the different values of 1,. Here, we
compare to the case where 1, = 3 inches, i.e.,
where every step is evaluated (time unit =

100). The curve on Fig. 5 represents calcula-
tion time needed to reach an optimal solution.
We see that calculation times are significantly
different from the case 1, = 3 inches. Time
decreases from 77.9% (1, = 6) to 10.2% (1, =

99). This result makes sense because the al-
gorithm does not lose time to evaluate useless
segments.

The bars on Fig. 5 represent the number of
segments that were evaluated during simula-
tions for each value of lo. As the reader could
notice, calculation time and this number of
segments are closely related. The more seg-
ments a simulation compares, the greater the
calculation time needed to reach an optimal
solution. Some values of 1, (1, = 12, 24,
33 . . .) seem to compare fewer segments than
their neighbors. While the small end of the
stem is not reached, the dynamic programming
algorithm tries to find an integer combination
of every bucking length at the current posi-
tion. So, consider the following equation de-
rived from this specific example:

O S A S L and A ~ O m o d 3 . (4)

In this equation, 99, 123, 147, and 195 are the
bucking lengths, I , is the minimum bucking
length, and A is the current position on the
stem between 0 and L. Because the step value
is 3 inches, A must be divisible by 3. The num-
ber of evaluated segments during the simula-
tions depends on the existence of a positive

Grondin-DYNAMIC PROGRAMMING ALGORITHM FOR TREE BUCKING 99

Proied Window Helo , - - -- - Sawmill - FRON.LW . A
--

FIG. 4. Fictitious mill as defined in the simulation software.

integer solution to this equation, which is
called a diophantine equation. The reader
should consult Niven and Zuckerman (1980)
for more details on the subject.

The values for 1, and A have a direct impact
on the existence of any positive integer solu-
tion. It could be shown (Niven and Zuckerman
1980, p. 135) that if 1, = 3 inches, there always
exists a positive integer solution. Things are
different when 1, > 3. For this example, it
could be shown using the theory of diophan-
tine equations that 1, = 24 inches would gen-
erate fewer positive solutions for any A than
1, = 21 or 1, = 27 inches.

We see in Fig. 6 that there is a 1.7% dif-
ference between the highest and lowest lumber
recovery rates between 1, = 0 and 1, = 69
inches. Since any segment of length 1, 1 72
is processed as a log, the lumber recovery rate

increases dramatically when 1, r 72 inches.
Recovery rate decreases between 0 and 69,72
and 81, 84 and 93, and 96 and 99. In this
example, the simulation may produce 48- to
96-inch lumber. When 1, = 84, it becomes
possible to produce 84-inch lumber (it was not
possible when 1, = 81). This explains the jump
in recovery rate and the cyclic recovery pat-
tern.

The same but reversed phenomenon oc-
curred for the chips percentages. As noted,
lumber recovery rates generally decrease and
chips percentages generally increase for in-
creasing values of 1, between 0 and 69. Re-
moving a longer segment and sending it to a
chipper offers less wood to transform into
lumber. Even if smaller values of 1, give better
results theoretically, higher values are more re-
alistic due to mechanical constraints of the

100 WOOD AND FIBER SCIENCE, JANUARY 1998, V. 30(1)

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99

Shortest bucking length (in)

I ~umb.r of segments 4- Calculation time

FIG. 5. Calculation time and number of evaluated segments vs shortest bucking length (lo).

buclung system. Values of 1, between 48 and
96 inches are unusual in sawmills. The only
reason they were considered for simulation
was to give the reader a complete view of the
impact of 1, on calculation time and recovery
rates.

Calculation time comparisons for a variable
step size (p)

The goal of this section is to show that the
step size p does not significantly influence
calculation speed of this improved dynamic
programming algorithm when the other pa-
rameters are set. Here, we simulate opti-
mized bucking where we set the minimum
length to 72 inches, the shortest bucking
length to 1,) = 24 inches. The set of prede-
fined bucking lengths is modified: 192, 144,
120, and 96 inches are chosen to allow a
larger step size. Because the step size must
divide all predefined bucking lengths, the
only possible integer values for the step are
1 , 2, 3, 4, 6, 8, 12, and 24 inches. We com-

pare calculation times for each case to the
case where the step is 1 inch. Since the al-
gorithm evaluates only those segment
lengths included in list B (except for the
small end of the stem where shorter seg-
ments may be evaluated), the optimal solu-
tion stays the same for all steps. Our objec-
tive here is to see if there is a significant
calculation time difference between simula-
tions using shorter steps with the same buck-
ing lengths. According to Fig. 7, mean cal-
culation time for step values lower than 24
inches is slightly higher. For this sample, the
worst case (p = 8) and the best case (p =

24) show a 1% difference in computer pro-
cessing time. These differences may be ex-
plained by the fact that dividing the stem
into shorter segments will generate more
segments to handle. Calculation time is rel-
atively stable for p = 1 through p = 8 but
decreases for p = 12 and p = 24 inches,
where fewer segments are generated. The
processing time differences for different step

Grondin-DYNAMIC PROGRAMMING ALGORITHM FOR TREE BUCKING 101

- --

Shortest bucking length (in)
- -- - - - - - I

1 -- - 1 lumber percentage chips percentage
-- --

- -
- - - - -- - - -

- - - -- - - - 1

FIG. 6 . Product volume recovery vs. shortest bucking length (lo).

Step size (in) i
- - - - - - - - -- -- - - - 1 - -

FIG. 7 Computational time increase vs. step size p when lo is set to 24 inches.

102 WOOD AND FIBER SCIENCE, JANUARY 1998, V. 30(1)

I 75 00 C--- - - - - - , -
0 36 48 60 72 84 96

Minimum acceptable length (in)

I -- - -- - --

FIG 8 Calculation time vs minimum log length (log,,,).

sizes are minimal so the failure to set p at
the optimal level will not lead to gross in-
efficiencies.

Calculation time and recovely rates
comparisons for a variable minimal log

length (log,,,)

In this section, the influence of log,,, on
calculation time and recovery rates will be
demonstrated. According to its definition,
log,,, is the length of the shortest log to be
processed into the mill. This parameter mostly
influences the decisions at the top of the stem,
where the length of the resulting segment is
not necessarily a standard buclung length, nor
a multiple of the step size. Lowering logmi,
would increase the total length of the tree that
can be processed. In that case, since the sim-
ulation saws every log with length higher than
log,,, and sends the others to a chipper, in-
creasing the amount of logs would also in-
crease calculation time. To demonstrate this
fact, a simulation was run where log,, could
take the values 0, 36, 48, 60, 72, 84, and 96
inches. The step value was set to 3 inches, and
the bucking lengths were set to 195, 147, 123,
99, and 24 inches. Since the length of usable

logs may change, we expect calculation times
and recovery rates to be affected.

According to Fig. 8, there is a 15% decrease
in calculation time between 0 and 36 inches.
Between 36 and 96 inches, calculation time
continues a slight downward trend. This result
can be explained by the fact that for logmin =
0 inches, every segment is considered as a log
and has to be processed into the mill. At log,,,
= 60 inches, there is a small increase due to
the amount of possible combinations of logs
that could be cut from the stem sample. Figure
9 demonstrates that lumber recovery rates de-
crease and chips recovery rates increase for
increasing values of log,,,.

CONCLUSIONS

In this article, we found assumptions that
help us to improve calculation speed of a dy-
namic programming algorithm that is used
during bucking operation. When we used this
algorithm in an integrated bucking and log
breakdown model, we realized noticeable im-
provements in computational speed when the
minimum bucking length is increased.

As mentioned earlier, the main advantage of
this algorithm is the possibility to simulate op-

Grondin-DYNAMIC PROGRAMMING ALGORITHM FOR TREE BUCKING

Minimum acceptable length (in)

% lumber t % chips 1

FIG. 9. Product volume recovery vs. minimum log length (logmi,).

timized bucking where the greatest common
divisor is small compared with bucking
lengths. For example, if our lengths are 99,
124, 149, and 200 inches, the greatest com-
mon divisor of these lengths is 1 inch. Current
algorithms may spend a lot of time to evaluate
useless segments. But if we add a shortest
bucking length of 1, = 24 inches and a mini-
mum log length of 72 inches, calculation time
decreases significantly (approximately 85%
compared to the case where I,, = 1 inch and
the minimum length is 72 inches).

This algorithm can be adapted for other
tasks. Optimized trimming, for example, may
use a similar version of this algorithm. In fu-
ture work, we can improve our algorithm by
taking account of the sawdust produced during
bucking and trimming operations. Also, in-
stead of looking only at log length, we should

support and their help, and Dr. Jan Wieden-
beck for valuable comments.

REFERENCES

BOBROWSKI, P. M. 1994. The effects of modelling on log
bucking solution techniques. J. Opt. Res. Soc. 45(6):
624-634.

BRIGGS, D. G. 1997. A dynamic programming model for
bucking tree stems into logs. Tropical Forests Utiliza-
tion System. Contrib. No. 30 Institute of Forest Prod-
ucts, College of Forest Resources, University of Wash-
ington. Editions Kenneth J. Turnbull Center for Inter-
national Studies. Seattle, WA. 12 pp.

. 1980. A dynamic programming approach to op-
timize stem conversion. Ph.D. thesis, University of
Washington, Seattle, WA. 393 pp.

EATON, N. J. 1977. LOGGON-A computer aid to opti-
mize the cross-cutting of roundwood. CSIR Spec. Rep.
HOUT 151. Council for Scientific and Industrial Re-
search, Pretoria, South Africa.

FAALAND, B., AND D. G. BRIGGS. 1984. Log bucking and

see if we can include other parameters like lumber manufacturing using dynamic programming.

diameters and sweep to determine if a log is Mgmt. Science 30(2):245-257.
GEERTS, J. M. P 1979. Optimal crosscutting of timber.

to be rejected or not. Dept. of Forest Technique and Forest Products, Agri-
cultural University Wageningen, The Netherlands. Pp.

ACKNOWLEDGMENTS 21 8-229.
GRONDIN, E, AND N. DROUIN. 1995. Modkle de simulation

The author wishes to thank Yves LCvesque, du sciage. Tech. Rep. Proj. No. 3315K331, Forintek
Nicol Drouin, and FrCdCric HCbert for their Canada Corp., Sainte-Foy, Qc.

104 WOOD AND FIBER SCIENCE, JANUARY 1998, V . 30(1)

LECARE, A. 1994. Modttle de tronconnage optimist par
ordinateur adapt6 aux bois de petites dimensions. Me-
moire pr6sentt pour l'obtention du grade de maitre 6s
sciences. (M.Sc. thesis). FacultC des ~ t u d e s SupCrieures,
Universite Laval, QuCbec, Canada. 165 pp.

MANESS, T. C. 1989. A technique for the combined op-
timization of log sawing and bucking strategies. Ph.D.
thesis, University of Washington, Seattle, WA. 198 pp.

MCPHALEN, J. C. 1978. A method of evaluating bucking
and sawing strategies for sawlogs. M.Sc. thesis, Faculty

of Graduate Studies, University of British Columbia,
Vancouver, BC. 81 pp.

MONGEAU, J. I?, AND M. GRONDIN. 1992. Un nouveau
modkle de simulation du dtbitage. Tech. Rep. Proj. No.
3343K388, Forintek Canada Corp., Sainte-Foy, Qc.

NIVEN, I., AND H. S. ZUCKERMAN. 1980. An introduction
to the theory of numbers. 4th ed. John Wiley & Sons,
New York, NY. 335 pp.

PNEVMATICOS, S. M., AND S. H. MANN. 1972. Dynamic pro-
gramming in tree bucking. Forest Prod. J. 22(2):2&32.

