
IMPROVEMENTS OF THE DYNAMIC PROGRAMMING ALGORITHM 
FOR TREE BUCKING 

Frangois Grondin 
Mathematician 

Forintek Canada Corp. 
3 19 rue Franquet 

QuCbec City 
QuCbec, Canada G1P 4R4 

(Received June 1996) 

ABSTRACT 

Log bucking is one of the most important operations in the transformation of trees into lumber. A 
bad decision at this stage can jeopardize the optimal recovery in volume or in value. The problem of 
optimizing the recovery during the bucking process has been solved using, among other things, dy- 
namic programming. This article describes the main approaches and suggests some improvements to 
the dynamic programming approach. By introducing certain assumptions into the dynamic program- 
ming algorithm formulation, this approach becomes both more realistic and more efficient. The al- 
gorithm defined here is used in an integrated bucking-breakdown model. Example simulations dem- 
onstrate the computational speed improvements that result from the introduction of the assumptions. 

Keywords: Optimized bucking, sawmilling simulation, dynamic programming. 

INTRODUCTION 

Log bucking is the operation that consists 
of cutting trees or stems into smaller logs of 
predefined lengths. This operation is necessary 
to transform a tree into valuable lumber. Be- 
cause log bucking is one of the first operations 
of a sawmill, the decisions made at this stage 
of the transformation process have profound 
influence on the recovery performance of the 
mill. The search for a better way to crosscut 
stems allows us to increase this recovery. 

The problem of subdividing a tree into 
smaller logs has been solved using well- 
known operational research techniques. One 
of these techniques, dynamic programming, 
has been used by many researchers during the 
last thirty years. However, program developers 
have made simplifying assumptions in order 
to narrow the search field so that computa- 
tional efficiency could be achieved. 

In this article, the first log bucking models 
will be presented. Emphasis will be placed on 

programming algorithm and computer time 
comparisons for some examples will complete 
this article. 

LOG BUCKING MODELS 

Models for bucking optimization only 

One of the first models involving dynamic 
programming was defined by Pnevmaticos and 
Mann (1972). The goal of this model was to 
maximize the value of a stem by evaluating 
the number of logs to cut, their length, their 
diameters, and the location of the logs along 
the stem. The constraints set by Pnevmaticos 
and Mann for their model were: 

a) The total length of the logs must be equal 
to or less than the initial stem length. 

b) The diameter of any log must be within 
the limits of the diameters of the remaining 
stem. 
c) Both log length and diameter must be 

within the limits specified by management. 

the major difficulties that occur in each case. This model uses some simplifying assump- 
Then we will suggest some basic assumptions tions. First, the stem is defined using a trun- 
that will be used in the mathematical formu- cated cone. Instead, they could have incorpo- 
lation of this problem. A modified dynamic rated real taper formulas for the stem. Then, 
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the step length used for dynamic programming 
is the shortest log length that could be pro- 
duced; this means that all other lengths have 
to be a multiple of this shortest length. 

The major shortcoming of this model ap- 
pears in the evaluation of log quality, which 
is based on probabilities, and in the estimation 
of log value, which incorporates only the 
length as a parameter. This model does not 
consider that a log should have overlength that 
is removed during the trimming operation. 

Briggs (1977) improves Pnevmaticos and 
Mann's model. In this model, the step length is 
defined as the greatest common divisor of ev- 
ery length that could be produced, which offers 
the possibility to take the trimming overlength 
into account. The model does not evaluate log 
quality using probabilities, but instead uses 
specifications given by sawmillers for maxi- 
mum and minimum diameters for each log 
class. Log value estimation is calculated based 
on the volume for each log dimension using 
Smalian's formula. 

In his model, Briggs assumes that the stem 
is rectilinear. He does not consider defects like 
curves in his representation. Also, Briggs' 
model optimizes only log or lumber volume 
instead of lumber and subproducts value. If 
residual or alternate products are highly val- 
ued, this model will not prove sufficient. 

Briggs (1980) improves his 1977 model to 
mitigate these problems. His approach is to 
create a general dynamic programming for- 
mulation, flexible enough to include any com- 
bination of log specifications and constraints 
that employs realistic stem quality features. 
Log value is evaluated by estimating the value 
of the lumber produced. This improves his 
1977 model because, in that model, two logs 
with the same volume but different shapes 
were considered identical. In this model, 
Briggs analyzes the impact of defects like 
sweep and crook on the optimal bucking so- 
lution. 

Estimation procedures used by Briggs 
(1980) are imprecise. To evaluate log volume, 
Briggs uses log scaling techniques that are 
quite inaccurate. A mean price is used for the 

lumber-for a given grade a 2 in. X 4 in. and 
a 2 in. X 6 in. are worth the same. A correc- 
tion factor is applied to reduce the optimal so- 
lution value, to account for some defects like 
curve and crook. For example, the impact of 
curve is reduced using the following factor: 

Curve Reducing Factor 

- - 
Maximal Deviation - 2 

Small End Diameter - (1) 

Please note, this factor does not consider log 
length as a parameter. For the same maximal 
deviation, the impact of the curve on recovery 
is usually greater for shorter logs than for lon- 
ger logs. 

Eaton (1977), McPhalen (1978), and Geerts 
(1979) developed similar models. Bobrowski 
(1994) employs another operational research 
technique, branch-and-bound, for log bucking 
optimization, and compares accuracy and 
computer time between this model and another 
model using dynamic programming. All those 
models are similar in one aspect-they con- 
sider the bucking operation independently of 
the log breakdown process. 

Integrated models including bucking and log 
breakdown optimization 

An integrated model including bucking and 
log breakdown optimization is built in a way 
such that the bucking operation must consider 
the result of the log breakdown simulation. 
Knowing the characteristics of a given log, it 
could be worthwhile to evaluate lumber re- 
covery using those characteristics. Faaland 
and Briggs (1984) developed a model in 
which bucking and log breakdown process are 
closely related. 

In their model, the stem is divided into seg- 
ments (steps for the dynamic programming al- 
gorithm). Those segments are used to find the 
best way to buck the stem in order to maxi- 
mize log value. This value is calculated by 
another dynamic programming algorithm that 
optimizes lumber value for the maximum cyl- 
inder included inside the log. 

The evaluation of the maximum lumber val- 
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FIG. 1. Longitudinal bucking system with scanner and 

ue does not consider that we could produce 
pieces shorter than the log length. Further- 
more, using a cylinder to estimate optimal 
lumber value recovery may not be accurate. 

Maness (1989) created a model in which 
bucking is optimized by dynamic program- 
ming. In his search procedure, the step was 
fixed at 24 inches plus one inch of overlength 
to reduce calculation time. His model uses a 
truncated cone to represent the stem, and the 
wane rules for the different grades are not 
used during calculations. 

In this section, the bucking model using dy- 
namic programming developed by Forintek 
Canada Corp. (Mongeau and Grondin 1992 
and Grondin and Drouin 1995) will be intro- 
duced. Bucking and log breakdown process 
are integrated: each log created during the 

drop gates for optimized bucking on sawmill log deck. 

bucking process is transformed by sawmill 
simulation. Stems and logs are modeled using 
elliptical cross-section representation. 

The bucking problem we will define here is 
different from the one defined by Pnevmaticos 
and Mann (1972). The approach is closer to 
the one presented by LCgarC (1994). This ap- 
proach was chosen to represent longitudinal 
and transverse optimized bucking systems 
(Figs. 1 and 2). We suggest, based on sawmill 
observations, the following three assumptions: 

1) A bucking system, optimized or not, gen- 
erally produces logs with fixed lengths, except 
for the small end of the stem where the last 
(topmost) log may be a different length. 

2) A mill can convert shorter logs if they are 
at least as long as a given minimum length. 
Short logs usually come from the small end of 
the stem. 

3) For an optimized bucking system, we  
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FIG. 2. Transversal buclung system with scanners and drop saws for optimized bucking on sawmill log deck. 

must distinguish between the (search) step 
length and the shortest length that could be 
removed. The step length may be shorter than 
the shortest length. 

For example, consider the bucking possibil- 

FIG. 3. Several alternative bucking possibilities for a 
3 1 -foot stem. 

ities for a 31-foot stem (Fig. 3). The bucking 
system is designed to produce logs 8, 10, 12, 
and 16 feet long. The operator may decide to 
recover three 10-foot logs or to recover only 
two 10-foot logs and one 11-foot log. Or the 
operator may choose to keep a 16-foot log and 
a 15-foot log if the last one has only a few 
defects. 

A bucking system should be flexible enough 
to handle variable log lengths at the small end 
of the stem that usually do not reach a pre- 
defined length. According to Fig. 3, if the mill 
has a minimum length specification of 8 feet, 
alternatives (a) and (c) are not viable. But, if 
the same mill admits logs 6 feet long or more, 
(a) and (c) should be considered as possible 
solutions. Of course, the optimal solution is 
closely related to the shape of the stem, to the 
lumber that could be produced, and to the op- 
timization criterion (volume or value). 

The last assumption refers to mechanical 
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limits of any optimized bucking system. Why 
should we try to estimate the stem each inch 
when the shortest length that is cut to remove 
defects is 24 inches? For a longitudinal buck- 
ing system (Fig. 1) where gates drop to a com- 
ing stem, we would not expect to have a gate 
placed 1 inch from the saw. We would also 
not expect to see two saws 1 inch apart in a 
transverse bucking system (Fig. 2). 

This does not mean that we cannot choose 
a 1-inch step. Usually the step length is the 
greatest common divisor of the bucking length 
or any other length that is a divisor of those 
lengths. For example, if the bucking lengths 
are 99, 124, 149, and 200 inches (8, 10, 12, 
and 16 feet plus an overlength), the greatest 
step length is 1 inch. If we choose a 1-inch 
step, we would evaluate stem value for pre- 
defined lengths including a shortest bucking 
length used to remove defects rather than for 
each step. 

Now, let a and b (a < b) be two integer values 
describing the starting and ending positions on 
the stem of the log segment produced (in num- 
ber of steps). Then: 

chips(a, b) = chips value of the log seg- 
ment with length (b - a)p 
I 1, starting at up; 

lumber(a, b) = breakdown (lumber + sub- 
products) value of the log 
segment with length (b -. 

a)p 5 1, starting at up; 
log-value(a, b) = value of a log segment 

with length (b - a)p 5 I ,  
starting at up generated by 
the bucking system. This 
value, evaluated using log 
breakdown simulation, is 
defined as: 

log-value (a, b) 

MATHEMATICAL FORMULATION 

Assumptions (I), (2) and (3) are the roots 
of the dynamic programming algorithm de- 
scribed in this article. Using these assump- 
tions, we can formulate the recursive mathe- 
matical equations for the dynamic program. 
First, we must define our variables and our - - 

functions: 

L = length of the stem 
p = step size used in the dynamic pro- 

gram 
log,,, = minimum log length that can be pro- 

cessed in the mill 
10 = shortest bucking length; this is the 

shortest length that can be produced 
by the bucking system 

B = {l,,, l , ,  . . . , 1,) = set of all predefined 
bucking lengths; those lengths are 
listed from the shortest length I ,  to 
the longest 1, and must be divisible 
by p;  they correspond to the log 
lengths the bucking station can pro- 
duce 

j = value of the current stage of dynamic 
program (in number of steps) 

(if a segment is shorter than 
minimum length that can be 
processed in mill) 

I max[lumber(a, b), chips(a, b),', 

(if a segment is equal to 
or longer than minimum 
feasible length) 

(2) 

We also define: 

stem-value(a, b) = value of any segment of 
the stem with length (b - a)p I 1, starting at 
up. The position a = 0 corresponds to the big 
end of the stem. 

According to the assumptions (I), (2) and (3), 
and using the definitions of log-value(a, b) 
and stem-value(a, b), we can build the fol- 
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lowing recursive dynamic programming algo- 
rithm for the stem value: 

s tentvalue  (0, j) 

0 
if j = 0; 

(initial condition) 

(while shortest bucking 
length is not reached) 

I max {stem-value(0, j - i) 
isI(j) 

- - 
+ log-valueti - i, j ))  

(while end of stem is 
not reached) 

max {stem-value (0, j - k) 
k t  K(j) 

+ log-valueti - k, j))  

( (at the end of stem) 

(3) 

where I ( j )  = {i E N I ip E B and i 5 j )  is the 
set of predefined bucking lengths (in number 
of steps) shorter than jp, KU) = {k E N 1 1 I 
k I: min(l,lp, j ))  is the set of available lengths 
(in number of steps) shorter than the minimum 
between the greatest bucking length and the 
length of the stem, and [x] is the smallest in- 
teger greater than or equal to x. 

Assumptions (1) and (2) occur during the 
evaluation of log-value(a, b). In fact, as long 
as dynamic programming does not reach the 
small end of the stem, the only lengths that 
can be produced are I,,, I,, . . . , 1,. When the 
small end is reached, the length of the log seg- 
ment can take any value between 0 and 1,. If 

the log segment length is shorter than log,,,, 
the segment is sent to a chipper and its value 
is based on chip revenues. Of course, if length 
1, is shorter than log,,,, all segments with 
length 1, are automatically converted into 
chips. If 1, is greater than log,,,, every seg- 
ment will be processed. For each segment, the 
algorithm will compare breakdown value and 
chip value to determine which is higher for 
optimization. 

The third assumption (3) occurs in the 
equation stem-value(0, j)  = -m. Knowing 
that 1, is the shortest length that could be 
removed from the stem, it is unnecessary to 
evaluate a segment that is not at least equal 
to 1,. This last assumption is the one that 
enables us to significantly increase calcula- 
tion speed for reaching the optimal bucking 
solution. 

PERFORMANCE COMPARISONS 

To demonstrate the benefits of using this 
algorithm, we will compare calculation 
times needed to optimize the bucking pro- 
cess for different step sizes (p), different 
shortest bucking lengths (I,), and different 
minimal log lengths (log,,,). Remember that 
this algorithm is employed in a model where 
bucking and log breakdown are integrated. 
To realize this performance test, a fictitious 
mill and a set of lumber products were de- 
fined. A short description of the mill is given 
in Table 1. Table 2 gives a list of all lumber 
products that can be produced. Lumber vol- 
ume optimization was tested during the sim- 
ulation. The stems used for this test came 
from northeastern Quebec. Log diameters 
and log centroid positions were collected at 
every 3 feet along the stem for each stem. 
Elliptical cross-sectional representations of 
the logs that consider sweep and crook were 
used. Cross-sections were added using inter- 
polation at every 6 inches to increase log 
representation quality. 

Forty-six different bucking optimization 
scenarios were simulated using a 486-DX 
33Mhz IBM-compatible computer. Because of 
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TABLE 1. Description of the jictitious mill used to demonstrate the tree bucking optimization model. 

M a c h ~ n e  center 
Cutting 

Posltlon of the piece 

Optimized bucker 

Diameter scanner 

Line 1 

Twin band saw 

Centered bulledger 

Line 2 

Chipper canter 

Centered bulledger 

Horizontal resaw 

Edger 

Trimmer 

end of piece at origin 

sweep up, split taper 

left face down, split taper 

sweep up, split taper 

preceding face down, 
split taper 

preceding face down, 
split taper 

preceding position 

end of piece at origin 

dynamic programming lengths: 
195". 147", 123", 99" (test on lo) 
192". 144", 120 ,  9 6  (test on p) 
195", 147", 123", 99" (test on logmin) 

sends logs with at least 3.937" at 
small end to line 1 

opening: 3.75" 
sawkerf: 0.145" 
number of saws: 3 
opening: 1.69" 
sawkerf: 0.145" 

opening: 2.75" 

number of saws: 2 
opening: 1 . 6 9  
sawkerf: 0.145" 

openings: 1.69", 0.875" 
sawkerf: 0.145" 

openings: 5.75", 3.75" 
sawkerf: 0.145" 

positions of the saws: 
0"-192", 0"168", 0"- 144", 0"-120, 
0 - 9 6 ,  0"84", 0"72", 
0 3 0 ,  0-48'' 

the long time needed for each simulation, 45 
stems of different lengths were randomly cho- 
sen. Calculation times for the simulations var- 
ied between 3 and 30 hours, depending on the 
step size (p), length of the minimum bucking 
segment (l,), and minimum log length to be 
processed (log,,,). 

The simulation software used here (see 
Mongeau and Grondin 1992 and Grondin and 
Drouin 1995) compares each breakdown pos- 
sibility and keeps the best. According to the 
number of breakdown possibilities, the sim- 
ulation may become time-consuming. In this 
simulation software, cutting a log corre- 
sponds to finding the intersection between a 
cutting plane and the log geometrical repre- 
sentation. When a log is cut by one saw dur- 
ing the simulation, it generates two distinct 
pieces and sawdust. To simulate the whole 
sawmilling process, the software simulates 

each machine in the mill. The piece to cut is 
first positioned (for example, a log is placed 
"horns down" in front of a twin band saw). 
Then, the piece is cut and the resulting pieces 
are sent to the next machine. This process 
goes on until all pieces reach the sorting table 
or the chipper where they are evaluated. If 
there are many positioning or cutting possi- 
bilities for a machine, every possibility will 
be tried and the best one will be kept. Figure 
4 gives an idea of the fictitious mill as defined 
in the software. 

Our goal here is to show with a few ex- 
amples the benefits of this improved dynamic 
programming algorithm. Lumber volume op- 
timization is used in the simulation in order to 
avoid building a fictitious price table for the 
products and to have more chances to generate 
lumber instead of chips (log-value(a, b) = 

lumber(a, b) if b - a r logminlp). 
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TABLE 2. Lumber sizes and wane rules used in example to demonstrate the tree bucking optimization model. 

Thickness Widths Lengths 
(reallnominal) (reallnominal) (reallnominal) 

0.875"/1" 2.75"/3" 4814' 
1.690"/2" 3.7Sf'/4" 60"/5 ' 

5.75"16" 72"16' 
Wane rules 84"/7' 

plank 96"/8' 
Grade thickness (%) width (%) length (%) 108"/9' 

0 SO 50 100 120110' 
1 75 75 100 132"/11' 

2 X 3 & 2 X 4 & 2 X 6  144"112' 
Grade thickness (%) width (%) length (%) 156113' 

0 25 25 100 168"114' 
1 33 50 100 180"/15' 
2 50 50 100 192"/16' 
3 75 25 100 
4 99 75 100 

Calculation time and recovery rate 
comparisons for a variable shortest bucking 

length (1,) 
In this section, we want to compare the im- 

pact of the shortest bucking length (1,) on cal- 
culation time. We set the step value to 3 inch- 
es, the minimum length to 72 inches, and the 
predefined lengths to 195, 147, 123, and 99. 
Those lengths were chosen so that the step 
value is the greatest common divisor. We then 
compare calculation times for values of lo from 
3 to 99 inches by 3-inch step. While I ,  < 72, 
any segment of length lo is automatically sent 
to the chipper. Otherwise, this segment would 
be considered as a log and would be processed 
into the mill. For this reason, the variation of 
1,) may have a direct impact on the recovery 
rate. This necessitates that we also compare 
the lumber recovery and chips percentages for 
the simulations. 

Figure 5 gives an idea about calculation 
time for the different values of 1,. Here, we 
compare to the case where 1, = 3 inches, i.e., 
where every step is evaluated (time unit = 

100). The curve on Fig. 5 represents calcula- 
tion time needed to reach an optimal solution. 
We see that calculation times are significantly 
different from the case 1, = 3 inches. Time 
decreases from 77.9% (1,  = 6) to 10.2% (1, = 

99). This result makes sense because the al- 
gorithm does not lose time to evaluate useless 
segments. 

The bars on Fig. 5 represent the number of 
segments that were evaluated during simula- 
tions for each value of lo. As the reader could 
notice, calculation time and this number of 
segments are closely related. The more seg- 
ments a simulation compares, the greater the 
calculation time needed to reach an optimal 
solution. Some values of 1, (1, = 12, 24, 
33 . . .) seem to compare fewer segments than 
their neighbors. While the small end of the 
stem is not reached, the dynamic programming 
algorithm tries to find an integer combination 
of every bucking length at the current posi- 
tion. So, consider the following equation de- 
rived from this specific example: 

O S A S L  and A ~ O m o d 3 .  (4) 

In this equation, 99, 123, 147, and 195 are the 
bucking lengths, I ,  is the minimum bucking 
length, and A is the current position on the 
stem between 0 and L. Because the step value 
is 3 inches, A must be divisible by 3. The num- 
ber of evaluated segments during the simula- 
tions depends on the existence of a positive 
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FIG. 4. Fictitious mill as defined in the simulation software. 

integer solution to this equation, which is 
called a diophantine equation. The reader 
should consult Niven and Zuckerman (1980) 
for more details on the subject. 

The values for 1, and A have a direct impact 
on the existence of any positive integer solu- 
tion. It could be shown (Niven and Zuckerman 
1980, p. 135) that if 1, = 3 inches, there always 
exists a positive integer solution. Things are 
different when 1, > 3. For this example, it 
could be shown using the theory of diophan- 
tine equations that 1, = 24 inches would gen- 
erate fewer positive solutions for any A than 
1, = 21 or 1, = 27 inches. 

We see in Fig. 6 that there is a 1.7% dif- 
ference between the highest and lowest lumber 
recovery rates between 1, = 0 and 1, = 69 
inches. Since any segment of length 1, 1 72 
is processed as a log, the lumber recovery rate 

increases dramatically when 1, r 72 inches. 
Recovery rate decreases between 0 and 69,72 
and 81, 84 and 93, and 96 and 99. In this 
example, the simulation may produce 48- to 
96-inch lumber. When 1, = 84, it becomes 
possible to produce 84-inch lumber (it was not 
possible when 1, = 81). This explains the jump 
in recovery rate and the cyclic recovery pat- 
tern. 

The same but reversed phenomenon oc- 
curred for the chips percentages. As noted, 
lumber recovery rates generally decrease and 
chips percentages generally increase for in- 
creasing values of 1, between 0 and 69. Re- 
moving a longer segment and sending it to a 
chipper offers less wood to transform into 
lumber. Even if smaller values of 1, give better 
results theoretically, higher values are more re- 
alistic due to mechanical constraints of the 
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3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 

Shortest bucking length (in) 

I ~umb.r of segments 4- Calculation time 

FIG. 5.  Calculation time and number of evaluated segments vs shortest bucking length (lo). 

buclung system. Values of 1, between 48 and 
96 inches are unusual in sawmills. The only 
reason they were considered for simulation 
was to give the reader a complete view of the 
impact of 1, on calculation time and recovery 
rates. 

Calculation time comparisons for a variable 
step size (p )  

The goal of this section is to show that the 
step size p does not significantly influence 
calculation speed of this improved dynamic 
programming algorithm when the other pa- 
rameters are set. Here, we simulate opti- 
mized bucking where we set the minimum 
length to 72 inches, the shortest bucking 
length to 1,) = 24 inches. The set of prede- 
fined bucking lengths is modified: 192, 144, 
120, and 96 inches are chosen to allow a 
larger step size. Because the step size must 
divide all predefined bucking lengths, the 
only possible integer values for the step are 
1 ,  2, 3, 4, 6, 8, 12, and 24 inches. We com- 

pare calculation times for each case to the 
case where the step is 1 inch. Since the al- 
gorithm evaluates only those segment 
lengths included in list B (except for the 
small end of the stem where shorter seg- 
ments may be evaluated), the optimal solu- 
tion stays the same for all steps. Our objec- 
tive here is to see if there is a significant 
calculation time difference between simula- 
tions using shorter steps with the same buck- 
ing lengths. According to Fig. 7, mean cal- 
culation time for step values lower than 24 
inches is slightly higher. For this sample, the 
worst case ( p  = 8) and the best case ( p  = 

24) show a 1% difference in computer pro- 
cessing time. These differences may be ex- 
plained by the fact that dividing the stem 
into shorter segments will generate more 
segments to handle. Calculation time is rel- 
atively stable for p = 1 through p = 8 but 
decreases for p = 12 and p = 24 inches, 
where fewer segments are generated. The 
processing time differences for different step 
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- -- 

Shortest bucking length (in) 
- -- - - - - - I 

1 -- - 1  lumber percentage chips percentage 
-- -- 

- - 
- - - - -- - - - 

- - - -- - -  - 1 

FIG. 6 .  Product volume recovery vs. shortest bucking length (lo).  

Step size (in) i 
- - - - - - - -  -- -- - - - 1  - - 

FIG. 7 Computational time increase vs. step size p when lo is set to 24 inches. 
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I 75 00 C--- - - - - - , - 
0 36 48 60 72 84 96 

Minimum acceptable length (in) 

I -- - -- - -- 

FIG 8 Calculation time vs minimum log length (log,,,). 

sizes are minimal so the failure to set p at 
the optimal level will not lead to gross in- 
efficiencies. 

Calculation time and recovely rates 
comparisons for a variable minimal log 

length (log,,,) 

In this section, the influence of log,,, on 
calculation time and recovery rates will be 
demonstrated. According to its definition, 
log,,, is the length of the shortest log to be 
processed into the mill. This parameter mostly 
influences the decisions at the top of the stem, 
where the length of the resulting segment is 
not necessarily a standard buclung length, nor 
a multiple of the step size. Lowering logmi, 
would increase the total length of the tree that 
can be processed. In that case, since the sim- 
ulation saws every log with length higher than 
log,,, and sends the others to a chipper, in- 
creasing the amount of logs would also in- 
crease calculation time. To demonstrate this 
fact, a simulation was run where log,, could 
take the values 0, 36, 48, 60, 72, 84, and 96 
inches. The step value was set to 3 inches, and 
the bucking lengths were set to 195, 147, 123, 
99, and 24 inches. Since the length of usable 

logs may change, we expect calculation times 
and recovery rates to be affected. 

According to Fig. 8, there is a 15% decrease 
in calculation time between 0 and 36 inches. 
Between 36 and 96 inches, calculation time 
continues a slight downward trend. This result 
can be explained by the fact that for logmin = 
0 inches, every segment is considered as a log 
and has to be processed into the mill. At log,,, 
= 60 inches, there is a small increase due to 
the amount of possible combinations of logs 
that could be cut from the stem sample. Figure 
9 demonstrates that lumber recovery rates de- 
crease and chips recovery rates increase for 
increasing values of log,,,. 

CONCLUSIONS 

In this article, we found assumptions that 
help us to improve calculation speed of a dy- 
namic programming algorithm that is used 
during bucking operation. When we used this 
algorithm in an integrated bucking and log 
breakdown model, we realized noticeable im- 
provements in computational speed when the 
minimum bucking length is increased. 

As mentioned earlier, the main advantage of 
this algorithm is the possibility to simulate op- 
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FIG. 9. Product volume recovery vs. minimum log length (logmi,). 

timized bucking where the greatest common 
divisor is small compared with bucking 
lengths. For example, if our lengths are 99, 
124, 149, and 200 inches, the greatest com- 
mon divisor of these lengths is 1 inch. Current 
algorithms may spend a lot of time to evaluate 
useless segments. But if we add a shortest 
bucking length of 1, = 24 inches and a mini- 
mum log length of 72 inches, calculation time 
decreases significantly (approximately 85% 
compared to the case where I,, = 1 inch and 
the minimum length is 72 inches). 

This algorithm can be adapted for other 
tasks. Optimized trimming, for example, may 
use a similar version of this algorithm. In fu- 
ture work, we can improve our algorithm by 
taking account of the sawdust produced during 
bucking and trimming operations. Also, in- 
stead of looking only at log length, we should 

support and their help, and Dr. Jan Wieden- 
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