TECHNICAL NOTE: EFFECT OF EPOXY EMBEDMENT ON
MICROMECHANICAL PROPERTIES OF BROWN-ROT-DECAYED
WOOD CELL WALLS ASSESSED WITH NANOINDENTATION

Jae-Woo Kimt

Postdoctoral Research Associate
E-mail: jkim54@tennessee.edu

David P. Harper

Associate Professor
E-mail: dharper4@tennessee.edu

Adam M. Taylor*¥

Associate Professor
Center for Renewable Carbon
University of Tennessee
Knoxville, TN 37996
E-mail: adamtaylor@utk.edu

(Received July 2011)

Abstract.

Mechanical properties of brown-rot-decayed wood cell walls were evaluated using a

nanoindentation technique. Epoxy resin is a typical medium for the sample embedding process in
nanoindentation. It is assumed that the embedding process does not affect cell wall properties or that any
effects are similar for different samples. As part of an investigation of microscale mechanical effects of
brown-rot in wood, we applied nanoindentation to cell walls of decayed and nondecayed pine wood
samples. For epoxy-embedded samples, there were no differences in modulus and hardness for control
and decayed samples. However, for unembedded samples, significant differences were found between
control and decayed samples. These results indicate that the epoxy-embedding process may confound
micromechanical testing results. We speculate that in this case, epoxy resin penetrated and reinforced the

cell wall of decayed samples.
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INTRODUCTION

Nanoindentation is a technique to measure mechan-
ical properties at the micrometer scale by apply-
ing controlled loads to the surface of materials.
Load and displacement are monitored during
loading and unloading cycles, and hardness and
reduced modulus are calculated from unloading
curves using equations derived from elastic
contact theory (Oliver and Pharr 1992).

Nanoindentation has been used to study early-
wood and latewood cell walls (Wimmer et al
1997), cell wall microfibril angle (Gindl and
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Schoberl 2004; Gindl et al 2004a; Tze et al
2007; Jakes et al 2008; Konnerth et al 2009),
cell wall lignification (Gindl and Gupta 2002),
adhesive bondlines (Gindl et al 2004b; Konnerth
et al 2007), and melamine-modified wood cell
walls (Gindl and Gupta 2002). Except for Jakes
et al (2008), who used unembedded wood spec-
imens prepared with a diamond knife, samples
are usually embedded in epoxy resin to provide
mechanical support during sample preparation
and a smooth surface for indentation after
ultramicrotoming (Wimmer et al 1997; Gindl
et al 2004a; Tze et al 2007; Konnerth et al
2009). It has been documented that penetration
of epoxy resin is limited because of the compact
structure of the woody cell wall (Jayme and
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Fengel 1961; Fengel 1967; Wimmer et al
1997; Gindl and Gupta 2002; Zimmermann
et al 2006). However, Meng (2010) reported
that the Young’s modulus and hardness of
loblolly pine increased with epoxy embedding
by 14% and 32%, respectively.

During early stages of decay, brown-rot fungi are
thought to use nonenzymatic oxidative mecha-
nisms because the pore size of sound wood cell
walls is too small for even the smallest enzymes
to penetrate (Cowling and Brown 1969; Flournoy
etal 1991). The chemistry of this proposed mech-
anism has been extensively investigated (Goodell
2003), and the dramatic impacts on macrome-
chanical properties by brown-rot fungi have been
well documented (Cowling 1961; Winandy and
Morrell 1993; Schwarze et al 2000; Curling et al
2002). However, spatial and temporal dynamics
of brown-rot decay at the cellular level are not as
well understood. Micromechanical techniques
may prove to be useful in the study of wood
deterioration processes; however, in this article,
we report on a sample preparation issue we expe-
rienced in applying nanoindentation to brown-
rot-decayed southern pine wood.

MATERIALS AND METHODS
Sample Preparation

A strip of southern pine (Pinus spp.) sapwood
(20 x 300 x 5 mm thick) was cut into a series
of 1- x 1-mm specimens that came from the
same annual ring band. Specimens were steam-
sterilized and placed on malt extract/agar plates
with samples of the brown-rot fungus Postia
placenta. After 4 wk exposure, the wood samples
were dried at 65°C for 24 h to stop fungal activ-
ity. Mass loss of 1 cm® samples exposed at the
same time was about 12%.

Nanoindentation

Samples (I x 1 X 5 mm) were embedded in
Spurr’s epoxy embedding medium (Electron
Microscopy Sciences, Hatfield, PA), which
comprises 10 g of cycloaliphatic epoxide
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(ERL-4221), 6 g of diglycidyl ether (DER 736),
26 g of nonenyl succinic anhydride, and 0.4 g
of 2-(dimethylamino)ethanol. Embedded sam-
ples were submerged in freshly mixed epoxy,
vacuum was applied for several minutes to pro-
mote penetration, and then the epoxy was cured
at 70°C in an oven for 8 h. Unembedded samples
were also prepared. Freshly mixed epoxy was
first placed in a conical embedding capsule and
cured at 70°C for 1.5 h to increase viscosity and
molecular weight of the resin. The capsule tip
was cut off, samples were inserted in the partially
cured resin, and the assembly was cured for
another 6.5 h. No vacuum was applied to
unembedded samples, and no resin was observed
in the cell’s lumina under an optical microscope.
Lumina of embedded samples were filled with
resin. For both embedded and unembedded
samples, care was taken to ensure that sample
orientation was perpendicular to indentation sur-
face. A smooth surface was prepared using a
glass knife followed by a Microstar Technologies
(Huntsville, TX) diamond knife using a Reichert,
Inc. (Buffalo, NY) OMU-3 Ultramicrotome. Sur-
faced samples were placed in a sample holder
and then magnetically clamped to the indenter
stage. Nanoindentation experiments were per-
formed with a Hysitron Inc. (Minneapolis, MN)
TriboIndenter system equipped with a three-sided
pyramid diamond indenter (Berkovich type). The
indentation cycle was as follows: after a set point
load of 2 uN was reached between sample and
tip, the loading cycle started at 30 uN/s up to a
maximum load of 150 uN. Maximum load was
held for 5 s and then unloaded at 30 uN/s. For
each specimen, nanoindentations were made on
the cross-sectional surface of the S, layer of late-
wood cell walls. Cell wall edges were avoided.
For each specimen, at least three different scan-
ning areas were selected, and for each scanning
area, at least three indentations were made on
multiple cells, therefore 11-64 indentations were
made.

RESULTS AND DISCUSSION

Prepared surfaces of the various samples were
similar when examined using the scan mode of
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the nanoindenter. The mean value of the reduced
modulus of embedded, nondecayed controls
was similar to that of unembedded controls
(Fig 1a) and close to previously reported values
(Tze et al 2007; Konnerth et al 2009). Average
reduced moduli of epoxy-embedded, brown-
rot-decayed cell walls were actually greater
than those of undecayed controls (p value
< 0.001, analysis of variance and Tukey’s
honestly significant difference procedure for
multiple comparisons) despite the long decay
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Figure 1. Reduced modulus (a) and hardness (b) of
unembedded and embedded specimens decayed for 4 wk
with brown-rot fungi. Numbers under the box plot are total
number of indentations made, and letters indicate statistical
difference (p < 0.05 from analysis of variance and Tukey’s
honestly significant difference procedure for multiple
comparisons).
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exposure period for samples and the decay
weight losses observed. In contrast, unembedded,
decayed samples showed significantly lower
average reduced moduli values. Hardness values
showed a similar pattern to reduced moduli data
(Fig 1b).

These results suggest that micromechanical
properties of control (nondecayed) wood cell
walls were not affected by epoxy embedding,
which could have been caused by limited pene-
tration of epoxy resin into sound wood cell walls
(Gindl and Gupta 2002; Zimmermann et al
2006). However, embedding apparently masked
mechanical property decreases in brown-rot-
decayed specimens. This may have been caused
by epoxy resin penetrating and reinforcing cell
wall openings that were created during incipient
decay by brown-rot fungus (Flournoy et al 1991;
Chirkova et al 2006). Given that mechanical
properties of epoxy are much lower than bulk
cell wall material, it is interesting that embed-
ded, decayed samples actually had significantly
higher modulus values. As a result of decay,
noncrystalline cell wall components were prob-
ably preferentially degraded, leaving more crys-
talline cellulose residues (Howell et al 2009).
Noncrystalline cell wall components may have
lower mechanical values than the epoxy used for
embedding. Replacement of these components
with epoxy could result in a composite with
mechanical properties greater than that of the
original cell wall.

Hardness values were not different for the
epoxy-embedded decayed and control samples.
The nanoindentation hardness of cell walls is
dominated by yield processes in the matrix lig-
nin (Gindl et al 2004). Brown-rot tends to mod-
ify, but not remove, lignin. This may explain
why the embedding process did not increase
hardness of the decayed sample. The natural,
pre-existing variations in wood properties of
each sample may have affected the results. Fur-
thermore, only a few of the many cells in each
sample were tested and the selection process
may have inadvertently introduced bias. How-
ever, care was taken to ensure that samples
were as similar as possible initially and a
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number of cells, from various locations within
each sample, were chosen to have the average of
values obtained be truly representative of the
treatments. However, further study is required
to determine the true extent of this epoxy rein-
forcement phenomenon of brown-rot-decayed
wood.

CONCLUSION

Nanoindentation data (reduced modulus and
hardness) obtained from brown-rot-decayed and
nondecayed samples can be affected differently
by epoxy embedding. Possible confounding
effects of embedding media should be consid-
ered when samples with altered cell wall struc-
tures are analyzed by nanoindentation.
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