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ABSTRACT

Using the concepts embodied in the equations of stress equilibrium, strain compatibility
and Hooke’s law, the partial differential equations of plane stress and plane strain char-
acteristic of homogeneous orthotropic bodies were derived. The plane stress problem re-
quires the simultaneous solutions of five differential equations. Normally only one of the
equations, that requiring compatibility of strain in the plane, is solved. In contrast, the
plane strain problem requires the solution of but one differential equation.

INTRODUCTION

In this paper, the plane stress and plane
strain problems of orthotropic and aniso-
tropic elasticity are derived in detail with
particular emphasis given to organization.
Basically, this subject has been well devel-
oped and reviewed by Lekhnitskii (1963)
and Hearmon (1961). However, because
of the general unfamiliarity of today’s wood
scientists with this topic, the authors feel
that a consolidated, detailed, and readable
treatment is needed. Furthermore, it is
intended that this article will furnish a
ready reference or starting point for subse-
quent papers on solution of specific prob-
lems involving wood and woodbase mate-
rials that meet the conditions defined herein.

Since but a handful of three-dimensional
elastic problems in isotropic as well as an-
isotropic media are amenable to analytic
solution, it is common to specialize prob-
lems to the simpler two-dimension approxi-
mations. In many practical problems, the
magnitude and variation of stresses and
strains along one of the coordinate axes are
small and can be ignored with minimal
error., Consequently, in many instances the
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two-dimensional simplifications of three-
dimensional problems provide sufficient in-
formation for design purposes.

The plane stress and plane strain prob-
lems of elasticity are classic examples of ide-
alized two-dimensional problems. A body,
extended in two directions (the plane) and
of small dimension in the third direction,
frequently can be considered to be in a
state of plane stress. For this problem,
boundary loads are restricted entirely to
the plane of the body. In contrast, a body
which is extended along one axis and which
is subject to boundary loads oriented in a
direction normal to the axis can sometimes
be characterized as in a state of plane strain.
The boundary loads must be independent
of the long axis. Methods of attacking
problems of this type are well documented
in a number of elementary as well as ad-
vanced texts on elastic theory (Shames
1964; Sokolnikoff 1956; Timoshenko 1951;
Wang 1953).

The formulation of both problems cul-
minates in a set of partial differential equa-
tions which must be solved subject to pre-
scribed conditions at the boundary of the
body. In general, a function which will
satisfy all the differential equations of
either problem is difficult, if not impossible,
to find. However, by ignoring all but one
of the differential equations in each case,
approximate solutions can be obtained.
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THE FUNDAMENTAL EQUATIONS OF
ELASTIC THEORY

Four fundamental sets of equations are
necessary for the solution of a problem in
the mechanics of a continuous body. These
are: 1) a law relating stress and strain, 2)
the stress equilibrium equations, 3) the
strain compatibility equations, and 4) stress
boundary equations. In the formulation of
the plane stress and plane strain problems,
the first three sets of equations, reduced to
a simple form, are combined to yield the
partial differential equations to be solved.
The fourth set of equations are used to
establish the boundary conditions for par-
ticular problems.

In this paper, the orthotropic and aniso-
tropic bodies are considered to be linearly
elastic. Consequently, Hooke’s law is used
as the basic equation relating stress and
strain, This law is conveniently expressed
in matrix form as either of equations (1)
or (2).

In these equations, the S, are coeffi-
cients of the compliance tensor, whereas the
Cijn are the coefficients of the stiffness
tensor. Rather than writing a tensor equa-
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tion for Hooke’s law, we have employed its
matrix equivalent in these equations. Using
matrix symbolism, we can write the equa-
tions

[7]-[8]le]

and
[«]= [C][]

The S and C matrices are related by the
equation

'sl- [l

Thus, if the coefficients of either the C or §
matrix are known, the coefficients of the
other can be calculated by matrix inversion.

For an orthotropic material, Hooke’s law
assumes a much simpler form. Strains are
expressed as functions of the stresses by
the matrix equation (4), whereas the in-
verse relationship is given by equation (5).
For purposes of calculation, it is sometimes
convenient to write equation (4) in terms

3)
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of the engincering elastic coefficients, vy,
Ei, and G;;. With these constants, equation
(4) takes the form of equation (6). In
equation (6), the indices 1, 2, and 3 refer
to the orthotropic axes of the material. For
example, E; is Young’s modulus in the x;
direction. A similar interpretation holds for
moduli E; and E;. The coefficient v; (Pois-
son’s coefficient) relates normal strains in
orthogonal directions by the equation
Yo=Y

Specifically

Y= K ez
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The application of a strain yge induces a
strain yy; as given by the equation above.
The coefficients G;; are the shear moduli
in the three orthotropic planes.

The elastic coefficient matrices of equa-
tions (5) and (6) are, or of course, related
by matrix inversion. Inversion of the com-
pliance matrix of equation (6) provides the
coefficients Cj; of equation 5. These co-
efficients are as follows in equation (7).

It is to be emphasized that Hooke’s law
of equations (4) through (6) is applicable
only to orthotropic boundary-value prob-
lems in which the geometric and orthotropic
axes of the material are coincident. If, for



PLANE STRESS AND PLANE STRAIN

239

Ew (1 - Vi Vza)

1111 1-21,V,5 ¥, -

Crno= Co =

V., V.

13 Va1~ Vg Vou ™

V.

V23 32

E, (v, + Vip Via)

1122 2211

1-2 Vip Vo3 Vs~

Vi V1= Vip Vo — Vo Vs

E (st 1 1)

_ _ 12 ¥
C””- C331'_ 1- 2V12 Vy3Vai= Vig Vi = Vp Yoy~ Vs Vs
(7)

C — E2(1_ Vis V31)

2222 1= 2V, Vg ¥y = Vi Vo= Vyp Voy = Vs Vs
C - C - Ez(V23+ Y3 V21)

2233 3322 1 -2, V¥, - Vg Vo= My Vo= Vo Vs,
C E (1 P Vzw)

example, a straight-grained wood beam
with the plane of the growth rings parallel
and perpendicular to the faces of the board
is under study, the beam can be considered
as approximately orthotropic. If, on the
other hand, a slope of grain exists in the
board or the growth rings are not normal
to one pair of surfaces, a higher degree of
anisotropy is introduced. In situations
where this occurs, one can use the law for
transforming a fourth-order Cartesian ten-
sor to obtain the elastic coefficients of the
board in its geometric frame of reference.
The transformation for components of the
compliance tensor takes the form

Sii= Andn Aedip O (8)

im~jn “ko " lp mnop

In this equation, the S,uop are the compli-
ances for the orthotropic axes, whereas the

gijkl are the compliances for the geometric
axes of the member. The a;; are the di-
rection cosines which relate the two sets
of coordinates. Transformations of compo-
nents of the stiffness tensor are effected by
a similar law. Transformations of this type
for orthotropic materials have been re-
viewed by Jayne and Suddarth (1966). As
a result of the non-coincidence of ortho-
tropic and geometric axes, it may be neces-
sary to represent the elastic nature of an
orthotropic body by Hooke’s law in the
form of equation (1). On the other hand,

3333 1_2142 Vys V3 - W3 Vo=V V21“V V.
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if the orthotropic and geometric axes are
coincident, Hooke’s law in the form of equa-
tion (4) or its engineering equivalent, equa-
tion (6), is used.

The second set of fundamental equations
required for formulation of plane stress
and plane strain problems are designated
as the stress equilibrium equations. These
equations can be written conveniently as a
matrix expression which takes the form

Oy Ty Ty3 66;1 B,
3

Oy Ty T3 a_><2 + B, = O (9)
a

T31 032 935 5‘;3 B,

In the absence of body forces (B;, Bs, and
Bs), equation (9) takes the expanded form

ao—11 ao?Z 801\3

ax, Ox, Ax, = 0

39y 90y 30y,

Bx, ax, | Ox o (10)
30-31 80-32 80-33

ox, + Ox, * Ax, o

Equilibrium in the form of equation (10)
will be used exclusively in this paper.
Strain compatibility equations, which are
the third set of requisite equations, can be
represented conveniently by a set of six
second-order partial differential equations
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which relate the six independent compo-
nents of strain. These equations are based
on the fundamental assumption that the
components of displacement and their
higher order derivatives are continuous
functions of the coordinates. Relationships
between the strain components result. Strain
compatibility is given by the set of equa-
tions

. _ 8% 3%
Ax, Ax, Ox; AIx}
A G A
Ax, Ox,4 Ax: Ax2
% _ B 3
Ax,0x%,4 Ax2 Ax2
2 r N
3 X1 — o 671/2 + aX3 _ 43723
Ax, D%, 3%, | 8x, Ax, dx,
, 8% _ 2 [3% 3% _ A
Ox, Ox4 Bxp | Oxs Ox, Ox,
. _ 8 [09% , 3% _ 3%
— 7’33 _ + -
dx, Ax, Oxs L_ax2 Bx, Bx, |
(11)

The final set of equations required for
solution of elastic problems are commonly
tagged as the stress boundary conditions.
The equations require the components of
stress to assume certain values at the bound-
ary in accordance with the loading con-
ditions on the body. The equations are
conveniently written in matrix form as

OTH o-.21 0-31 n1 T‘I
Oz Tpz T3z nt =T, (12)
Ti3 T3 T3] | Ny T

In this equation, the oy are the compo-
nents of stress, the n; are the direction co-
sines of the outward normal of a bounding
surface, and the T; are the vector compo-
nents of the force intensities applied at the
boundary. As indicated earlier, this set of
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equations is used to establish the boundary
conditions for the characteristic partial dif-
ferential equations of plane stress and plane
strain.

THE PLANE STRESS PROBLEM

For the plane stress problem, we consider
a system of the type illustrated in Fig. 1.
The body is of relatively small dimension
along the X3 coordinate and is extended in
the 1-2 plane. It is of thickness h and the
plane formed by the X; and X, axes lies
midway between the upper and lower sur-
faces. As a first approximation, it can be
considered a plane body referenced to the
1-2 plane. Forces applied at the boundary
of the body also are located in the 1-2
plane.

Since the plane surfaces of the body are
not subject to loading, it follows that the
normal stress os; and shear stresses os1
and 032 must disappear at the surfaces x3 =
=+ h/2. Itis assumed that these components
of stress within the body are small in mag-
nitude and as a first approximation can be
considered to vanish at all interior points.
As a result of symmetry of the stress tensor,
i.e. oa; = 013 and oa23 = 032, only three inde-
pendent non-zero components of stress, a1,
020, and ooy, remain. Since the body is
loaded only in the plane, it is logical to as-
sume that these stress components are func-
tions only of x; and x.. Consequently, the
equilibrium equations (10) take on a par-
ticularly simple form

gy, 90, _
3t ax = O
(13)
8021 80-22 - O
Ax, Ox,

In order to develop the characteristic
partial differential equations of plane stress
and plain strain, we define a function ¢(xi,
x2) which is continuous and possesses pure
and mixed derivatives which are continuous
to at least the fourth order. The function ¢
is defined in such a manner as to satisfy
the equilibrium equations as given by (13).
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X3
|

Note: All forces lie in
X, X, Plane

Fic. 1. A body subject to a state of plane stress.

As a result, the components of stress are By substituting equations (14) and (13),

given by we can demonstrate readily that ¢(x;, x2)
5o as defined will satisfy the simplified equi-
= a2 librium equations.
. After substitution of the non-vanishing
Tps = gx‘% (14) components of stress, o11, 022, and o2, into
' Hooke’s law for the anisotropic material
o, = -3% (equation [1]), it is apparent that all six

T 9x8x, independent components of strain exist in
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the anisotropic plane body. In contrast,
if the three independent planar stresses are
substituted into Hooke’s law for the ortho-
tropic solid (either of equations [4] or
[6]), it is found that only four components
of the strain tensor exist: yi1, y22, yss, and
viz. In either case (anisotropic or ortho-
tropic), it is clear that plane stress is not ac-
companied by a state of plane strain.

Consider the anisotropic plane system.
In the presence of only three components
of stress, equations (1) simplify to

’yﬂ = S (71'1 * 81122 SF + 28 9,

1111 22 1112 2
');2 = S2211 O;W + 82222 O‘22 + 282212 01-2
X;‘I = 83311 O;W + S3322 0-22 + 253312 072
7?/.3 =2 82311 O;W + 2 82322 0-22 + 452312 0?2
’XB = 2 5131‘\ O;l t 2 81322 0-22 + 48‘[312 0-12

S
I

, =25, a, +25

1211 Y11 1222 0-22 + AS gy

1212 12
(15)
The strains as given by this set of equa-
tions are functions only of x; and xs since
the stresses on which the strains depend
are functions only of x; and xs. Conse-
quently, the strain compatibility equations
(11) reduce to a more simplified form. The
simplified set, written in the same order as
(11), is as follows:

£, _ 8%, 3
3x,8x, ~  Ox ax?
2
o . %

Ax?

2
5. %
T9xz?

3 |84 a7, -0
Ox, | Ox, Ox,|

Ox,0x,
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This sct of strain compatibility equations
results from the fact that none of the com-
ponents of strain are functions of x;.

The plane stress problem for an aniso-
tropic body is formulated by combining
equations (14), (15), and (16). The proc-
ess of combination is straightforward and
can readily be accomplished by substituting
(14) into (15) followed by substitution of
the new equations into equations (16). A
set of six fourth-order homogeneous partial
differential equations result, as given by
equation (17).

The solution of this set of differential
equations, even for the most simple bound-
ary conditions, proves to be an extremely
difficult task. As a result, it is conventional
to consider that the first of this set of equa-
tions specifies completely the plane stress
problem for the anisotropic body. The re-
maining five equations are not considered
in the description of the problem. The error
introduced by ignoring five of the equations
is considered to be minimal. Consequently,
the plane stress problem in an anisotropic
body is characterized approximately by the
partial differential equation (18) which
must be solved subject to prescribed
boundary conditions. These conditions fre-
quently take the form of boundary stresses
which, according to equations (14), are
specified by second-order derivatives of the
function ¢.

The orthotropic plane stress problem is
formulated in a manner similar to that fol-
lowed for the anisotropic case. Iooke’s law
for the orthotropic plate, subjected to a
state of plane stress, takes a somewhat more
simple form than that of the anisotropic
material. For the orthotropic medium, we
have

X1 = 511110-11 + 811220'22
’);2 = 522110?1 + 822220'22
(19)
);3 = 533110'11 + 3322922
77/2 - 487212032

Because of the dependence of the strains
on x; and x» only and, the nonexistence of
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shear strains yis and yz;, two of the strain
compatibility equations vanish identically.
The four remaining compatibility equations
are as follows:

8% _ N, 3%
Ax,9x, Ax? Ax}
% _
ax2 T 0
20
2 (20)
Ax0x%,
3%,
axz 0

Combining equations (14), (19), and (20)
in a manner similar to that followed for the
plane anisotropic problem yields a set of
fourth-order partial differential equations
characteristic of the plane orthotropic prob-
lem.

These equations are as in equation (21).

A complete solution of the plane ortho-
tropic problem must encompass these four
equations. In a manner analogous to the
anisotropic problem, it is conventional to
disregard the last threc cquations of (20)

and assume that the orthotropic problem is
characterized by the first equation. Ac-
cordingly, we consider equation (22) as
the characteristic differential equation of
plane stress in an orthotropic medium.

THE PLANE STRAIN PROBLEM

For the plane strain problem, we con-
sider a system of the type illustrated in Fig.
2. The body is of prismatic shape and is
extended along the X; axis. Surface forces
are functions of x; and x» only. These forces
are restricted to act in a direction normal
to the X, axis. We assume that the three
components of body force, By, B, and Bs,
are zero. The ends of the body are con-
strained. Consequently, the displacement
component uz =0 at the ends. Further-
more, because of symmetry of the body,
u; = 0 at the midpoint X3 =0. As a result,
it is assumed as a first approximation that
u; =0 everywhere. Since the boundary
forces which act on the body are indepen-
dent of xs, it is assumed also that the dis-
placement components u; and u: a large
distance from the ends are functions of x;
and x» only.
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4
822225;17 + 2(8112< + 251212) 26 2 + Snna 4 0
a's 80 _
S3311 ax12ax22 + 33225)(? O
(21)
3'v 5 8% _ g
Smm Y Cnnplex, T
3 v _
Saana—x;' + 533225)(127)(22 = 0
a%
S 228)(14 + 2(8112’+ 281212) Za 2 + 811116 4 O (22)

As a result of the restrictions and approxi-
mations described above, it is apparent from
an inspection of the equation for strains, ex-
pressed as partial derivatives of the dis-
placements, that three components of strain
are non-zero and three vanish. The three
non-zero strains are y1, yo2, and vz, whereas

Since the strains yi1, ys2, and yq» are func-
tions only of x; and x, it follows that all six
components of stress are similarly functions
of x; and x,. Consequently, in the absence
of body forces, the stress equilibrium equa-
tions (9) take the simplified form

3ay, 30,

the three components of strain which vanish e T e =0
1 2
are vyss, yzs, and y;3. Consequently, as a
first approxim.ation, t‘he body is subject to 80y ., 8%, _ 0 (23)
a state of strain confined to the 1-2 plane. ax, ax,
For the case of plane strain, Hooke’s law
for the anisotropic material takes the matrix 84y, 9% . o
form: Ax, dx,
Fo’n C1m Cioe G 7.;| Inspection of the strain compatibility equa-
C C C tions (11) indicates that all are identically
Tz 2211 2222 2212 %0 zero, with the exception of
33 C3311 C3322 C3312 72
= %, , B _ &Y,
+
Tz C2311 C2322 C2312 Ox7 A%, Bx;9x,
a; C C C - o .
" B 1322 1312 Substituting the strains into this equation
e Con Cow Cou using the compliance form of Hooke’s law
- — for the anisotropic solid yields the equation
82 aZ ) a2 a? 2
2S 1 2 2 d’a,
‘l211a)(“ax2 + 2812228)(16)(2 281233ax 5] + 4512236)(16)(2 + 4S1213ax1a1;2
&gy, d'o; &', a8’ 3’
+ 4812126x1ax2 1111_6;212_1 + SHZZ ﬁ + 81133 Bx7 + 251123 ax;
o, o, °a; &, o
+ 2811135? + 281”28‘&‘2& + S2211 721 + 82222?1%2 + 82233 2 1323
°o; EXer &,
+ 252223 Ax 233 + '23221sa_x1|>—3 + 282212?1212
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X, X, Plane

“

X, X, Plane
Fs

X5

Fe

X, X, Plane

Note: All forces lie in
X,, X, Plane

Fic. 2. A body subject to a state of plane strain.

The aim of this analysis, as was the case
for plane stress, is to obtain a partial differ-
ential equation in a single dependent vari-
able which characterizes plane strain in the
anisotropic body. This requires the gener-
ation of an unknown function which sat-
isfies the equilibrium equations (23). A sim-
ple function such as that defined by equa-
tion (14) will not suffice. A combination
of unknown functions is required. As yet,

this is unavailable, and the plane strain
problem of anisotropic elasticity cannot be
characterized by a homogeneous partial dif-
ferential equation.

In contrast, the state of plane strain in
the orthotropic medium can be described
by means of a single partial differential
equation. Substituting the state of plane
strain into equation (4) for the orthotropic
system yields the matrix equation
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which, when expanded, gives indicate that the stresses o11, 022, 012, and

R N s vt i
%o = 522” I 52222 Taoo ¥ o33 T forhfht(il((: rz?li(s)zllrloczlf)fm lf(?(iill}l/n;;)rces, the stress
%= Spo.+ Spmon+ Suuo,= O fgﬁﬁﬁ;ﬂ;&;}(gﬁ;ﬁm (9) take on a par-
% 4323230-23 =0 aa, a0,
Y, = 45550, = O I (25)
. = 45, o, aaiz 52=0

The fourth and fifth of this set of equations
imply that

T3 = 03 =0
whereas, the third equation can be solved
for o33 to yield

— "(833”0-11 + 833220-22)

3333

O33

Substitution of this expression for o33 into
the first two of the equations for Hooke’s
law gives equation (24). These two equa-
tions with the simple expression for

Xz =4 81212 T2

3333

As was the case for plane stress, a function
such as that described by equation (14)
will satisfy these equations.

As was shown earlier, five of the six strain
compatibility equations are identically zero
for a state of plane strain. Substituting
equations (24) and (25) into the one re-
maining strain compatibility equation

3,
9x,dx,

',
Ox,

%
Ox,

+

and using the stress function defined by
equations (14), we arrive at the partial dif-
ferential equation (26). It should be noted

SiS
+ 51122 . ( 1133 3322 Tys
3333

(24)

S, S °
822” _ (__2233 3311 o, + 52222 _ 22233 Ty

3333
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S2233 ) ﬂ

(82222“ 53333 axf

that cquation (26) which describes the
plane strain problem in orthotropic ma-
terials has basically the same form as equa-
tion (22), which described plane stress in
the orthotropic material. The difference
between the two equations is that due only
to the numerical constants.

CONCLUSIONS

The state of plane stress in both aniso-
tropic and orthotropic media is described
by sets of fourth-order homogeneous partial
differential equations. Approximation to the
stress distribution in either type of body can
be obtained by considering only the strain
compatibility equation relating the two
normal strains and the shear strain in the
plane. The homogeneous partial differen-
tial equation which results requires solution
subject to the boundary conditions of the
body.

Plane strain in the anisotropic body can-
not be expressed in the form of a differen-
tial equation in a single unknown variable.
In contrast, all five of the strain compati-

4
N (25‘212 + 281122 - __81_15338_3322>—6L

3333
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2\ 4
§1m)a°4 =0

+ (8- e |0 (26)

2 2
A%y 0%,

bility equations are identically zero for
plane strain in an orthotropic body. Sub-
stituting a stress function into the remajning
strain compatibility equation provides a
fourth-order homogeneous equation. Con-
sequently, plane strain in the orthotropic
body is subject to exact solution.
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