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ABSTRACT 

Color information, already shown to be valuable in distinguishing wood surface features, should 
prove especially useful for future applications of machine vision in the wood products industry. This 
review provides investigators interested in such applications with the information necessary for un- 
derstanding the benefits-and associated difficulties-of using color. Various standard color-mea- 
surement systems ("color spaces") are discussed. No one system has been completely successful, at 
least partly because simple physical measurements are difficult to correlate with a human observer's 
complex perception of color. Color video camera systems, designed with human viewers in mind, 
have the potential for machine vision applications, but certain system "features" (white balance, 
gamma or contour correction) could cause problems. Future applications, including detecting and 
classifying hard-to-identify defects and matching colors of wood components, will require careful 
choice of lighting geometry and source, camera system, and color space for the purpose at hand. 

Keywords: Optical scanning, machine vision, automation, spectral reflectance, color models. 

INTRODUCTION 

Visual inspections are central to many wood-processing decisions. Their pur- 
pose may be to assess overall wood quality, as in grading, or to locate specific 
defects, including cosmetic ones like pitch streak or structural ones like open 
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holes. Substantial efforts have been made to develop machine vision systems 
capable of automatically making these types of inspections. Existing applications 
of machine vision in the wood processing industry tend to be relatively simple. 
They work with binary or gray-scale images and ignore the intricacies of human 
vision, especially its ability to perceive color. This simplifies system design and 
reduces the amount of data to be manipulated. However, for future applications, 
e.g., color matching of wood components or detecting and classifying certain 
difficult-to-identify defects, the use of color information and understanding how 
humans perceive color will be desirable or even critical. For example, Conners 
et al. (1985) concluded that color information could help reveal surface defects 
on maple (Acer spp.) lumber. In another study, Butler et al. (1989) found that 
color information was critical for detecting pitch streak in Douglas-fir [Pseudotsuga 
menziesii (Mirb.) Franco] veneer. 

The purpose of this paper is to provide investigators interested in applying 
machine vision to wood manufacturing processes with the information necessary 
to understand the benefits and associated difficulties of using color. The discussion 
describes how standard measurement systems characterize color and how machine 
vision systems sense and process color. Two other components of the discussion- 
how humans see color and how video camera systems render color-are consid- 
ered vital for at least two related reasons. First, where the objective is to monitor 
or control product appearance, it is imperative that the machine vision system 
be able to closely duplicate the perception of a human observer. Second, the most 
available and least expensive way to implement color-based machine vision sys- 
tems is to use standard color video cameras. However, because the video industry 
is driven by commercial television standards and because its products are designed 
for human viewers, understanding commercial systems' limitations is prerequisite 
to using them in machine vision applications. 

HUMAN COLOR VISION 

Although human color vision has been intensively investigated, it is not well 
understood (Levine 1985). A common misconception is that colors have a simple 
association with light frequency. The association exists, but is far from simple. 
For example, there is no single frequency of light that will produce the color we 
call purple. Moreover, a particular yellow may result from a single light frequency, 
from a mixture of two distinctly different frequencies (red and green), or from a 
mixture of many frequencies. Color can be defined as that "attribute of visual 
perception that can be described by color names: white, gray, black, yellow, orange, 
brown, red, green, blue, purple, and so on, or by combinations of such names" 
(Billmeyer and Saltzman 1981). This definition implies that color is a psycho- 
logical phenomenon involving considerable processing of the eye's retinal inputs 
by the human optic nerve and brain. This psychological component greatly com- 
plicates any measurement standard for quantifying color. 

Sight is the result of the brain's processing the eye's retinal inputs, which depend 
on the spectral power distribution of the light source (the energy at each light 
frequency in the source), the spectral reflectance of the objects under view (the 
light reflected at each frequency), and the retina's spectral response. Humans can 
sense color because their retinas contain three different types of photoreceptors, 
called cones, each of which has its own pattern of response when exposed to any 
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FIG. 1. HOW a response triple is produced from three different response curves. Adapted from 
Billmeyer and Saltzman (198 1 ,  p. 1 12). 

particular mixture of light frequencies. Color video cameras (discussed later in 
this review) also use three different types of photoreceptors. For both the eye and 
the camera, a single basic sensor is fitted with different color filters to produce 
the three different response curves (Fig. 1). Each curve is used to integrate the 
incoming light into a single response value. Together, the three values constitute 
a "response triple" that characterizes a single perceived color. This process is not 
reversible; that is, from knowing an object's response triple, it is impossible to 
determine its spectral reflectance. Consequently, two objects with very different 
spectral reflectances can have identically perceived colors. (They are then said to 
be metamers.) This property depends upon lighting conditions as well as reflec- 
tances, e.g., two surfaces that appear to be identical under incandescent light may 
have obviously different colors in daylight. 

"Color constancy," another important feature of human vision that must be 
considered when developing color-based machine vision systems, is the property 
by which humans perceive only a small change in an object's color with relatively 
large changes in the light source used to illuminate it (illuminant color), as when 
a cloud covers the sun. This phenomenon is not fully shared by color video 
systems, which are not as adept at compensating for changes in illuminant color. 
This difference emphasizes the importance of lighting control with machine vision 
systems. 

STANDARD COLOR MEASUREMENT SYSTEMS 

To use color information in any application, including machine vision, it must 
be stated in quantitative terms. Many such systems have been devised. The 
number of systems reflects the difficulty of the task and the lack of complete 
success for any one system. 

The first quantitative measurement standards for color were established by the 
Commission Internationale de 1'Eclairage (CIE), a Paris-based international body 
formed for this purpose. The CIE began by arbitrarily selecting three "primary" 
monochromatic (single-frequency) lights of wavelengths 700.0 nm ("red"), 546.1 
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FIG. 2. a) ?, 2, 6 color matching functions (the "standard observer's" functions), adopted by the 
Commission Internationale de I'Eclairage (CIE) in 193 1 and resulting in the CIE RGB color space. b) 
(2, F, 23 color matching functions, transformed from the CIE "standard observer's" functions to 
the CIE XYZ color space. Adapted from Billmeyer and Saltzman (1981, pp. 39 and 40). 

nm ("green"), and 435.8 nm ("blue") to create an R, G, B (CIE RGB) color 
coordinate system, or "color space." Although the choice of exact frequencies was 
arbitrary, they were required to obey Grassman's "laws" of color mixture, one of 
which states that any colored light can be exactly matched by a mixture of the 
three primaries. Psychophysical experiments were performed to determine the 
mixture of the three primaries that matched the color of a given monochromatic 
light. Plots of the relative amounts of the three primary colors (tristimulus values) 
required to match monochromatic light of any given wavelength (Billmeyer and 
Saltzman 198 1 ; Wyszecki and Stiles 1982; Sproson 1983) appear in Fig. 2a. These 
"standard observer's" color matching functions, adopted by the CIE in 193 1, 
result in the CIE RGB color space. The functions take on negative values when 
a primary must be added to the test color to obtain a match. 

One characteristic of color matching functions developed from different sets of 
primaries is that they can be transformed one to the other with simple linear 
combinations (Hunter and Harold 1987). One such linear transformation was 
developed by the CIE to produce a new set of primaries and corresponding color- 
matching functions (2, 9, 5) with the following desirable properties. The coef- 
ficients 2, i;,, and i never take on negative values; i;, follows the human visual 
response for luminosity (overall brightness); z" is nearly zero over as much of its 
range as possible; and the coefficients take on equal values when evaluated with 
any light source having equal energy at every wavelength. Figure 2b shows the 
resulting CIE 2, 9, 2 color matching function used to create the X, Y, Z (CIE 
XYZ) color space. 
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Because the color of an object depends in part upon the illuminant, the source 
of illumination must be specified before colors of objects can be meaningfully 
compared. Therefore, the CIE developed several "standard illuminants" with 
specified theoretical spectral power distributions. (A standard illuminant may or 
may not have a corresponding physical "standard source" capable of producing 
it.) CIE source A approximates normal incandescent indoor light; source B ap- 
proximates the visible range of direct daylight; and source C approximates scat- 
tered (overcast) daylight. The illuminant D,, also approximates scattered daylight, 
but includes an appropriate range of ultraviolet light. This illuminant is useful 
for analyzing materials that fluoresce and has been widely employed as the ref- 
erence white for color television monitors. 

The color of an object is measured by illuminating it with a CIE light source 
(which must be specified in reporting results), then measuring its tristimulus 
values. These values may be measured directly by using three photodetectors 
having spectral response functions that match the CIE (2, $, 2) functions. They 
may also be indirectly determined by using a spectrophotometer to measure the 
entire spectral curve of the reflected light, then integrating it against each of the 
(1, 9, 2) functions. The resulting tristimulus values are the CIE XYZ standard 
color coordinates of the object. Each of them contains information concerning 
both the object's luminance (brightness) and its chromaticity (color). However, 
humans tend to perceive the chromaticity of an object independent of its bright- 
ness; that is, making an object appear dimmer does not usually change its color. 
A number of color spaces have been developed from the basic CIE coordinates 
that better separate luminance and chromaticity. 

The most closely related system to CIE XYZ is the "reduced" CIE Y, x, y 
system (CIE Yxy), where Y = Y, x = X/(X + Y + Z), and y = Y/(X + Y + Z). 
This system retains the Y coordinate for overall brightness. The reduced coor- 
dinates x and y (chromaticity coordinates) are considered "purer" measures of 
color because they contain only chromaticity information and are unaffected by 
changes in the level of the illumination. However, the x and y coordinates do not 
easily convey the sense of color perception common to human experience. 

An attempt to use these coordinates to introduce such a sense produced the 
CIE xy chromaticity diagram (Billmeyer and Saltzman 198 1). Although the con- 
cepts in this diagram are valuable, it has several shortcomings. Its description of 
hue can be ambiguous; there is no specifically defined point corresponding to 
black; and differences between colors are not accurately reflected by the distances 
between coordinate values. For example, "greens" whose points are separated by 
a given distance are generally much more alike than "reds" of the same separation. 

A color space that preceded the CIEs and that lacks some of these irregularities 
is the Munsell color system for hue, value, and chroma (Munsell Color Company 
1929; Fig. 3a). With this system, the colors produced by a prism differ largely in 
hue, the colors produced by using brighter or dimmer light sources differ largely 
in value, and the colors produced by combining varying amounts of white light 
with the pure color differ in chroma. However, the Munsell system is not easily 
related mathematically to the CIE color spaces because it is based on physical 
samples with equal intervals of visual perception. 

One attempt to relate the Munsell and CIE RGB color spaces is Smith's (1 978) 
hue, value, saturation (HVS) transformation, used in the computer graphics in- 
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FIG. 3. a) Munsell color solid (Munsell Color Company 1929), defining color by hue, value, and 
chroma; from Billmeyer and Saltzman (1981, p. 52). b) Smith's (1978) HVS color space, defining 
color by hue, value, and saturation and represented by a hexcone; from Foley and Van Dam (1983, 
p. 614). 

WHITE 

dustry, in which hue (H) and value (V) are defined as in the Munsell system, and 
saturation (S) corresponds to the Munsell chroma. The HVS system transforms 
the rectangular primary-color space into a polar coordinate system represented 
by a single hexcone (Fig. 3b). Unlike the CIE xy chromaticity diagram, it has a 
defined point for black and unique values for all hues. However it, too, does not 
produce equal intervals of visual perception between coordinate values. 

There have been a number of attempts to create more uniform color spaces 
from the basic CIE measures. Although no true uniform space has been developed, 
the CIE in 1976 adopted two nonlinear systems that more nearly model human 
color perception: the L*, u*, V* (CIE LUV) and the L*, a*, b* (CIE LAB). These 
color systems are especially useful for determining perceptual color differences. 
Neither system has been found to be significantly better than the other (Pointer 
198 1). 

The color systems discussed so far are generally used to describe color for 
applications such as color matching and are not well suited to use in color video 
systems, where issues of efficient information encoding (bandwidth), compatibility 
with black-and-white television standards, and simplified hardware design are 
dominant. Thus, two special systems derived from CIE specifications were de- 
veloped by the National Television System Committee (NTSC). The NTSC YIQ 
system is used in broadcast television to make color transmission compatible 
with black-and-white transmission. The NTSC RGB system is used to encode 
information from the camera and is used in closed-circuit applications. Together, 
the three RGB signals have approximately three times the dynamic range of the 
YIQ signal. The NTSC RGB system is comparable, but not identical, to the CIE 
RGB system. For a more complete discussion of NTSC standards, see Pritchard 
(1977). 

Other coordinate systems are in use as well. See Wyszecki and Stiles (1982), 
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ANGLE OF REFLECTION 

FIG. 4. Typical specular reflection curve for a) metallic (shiny white) surface and b) diffuse (matte 
white) surface. Adapted from Hunter and Harold (1987, p. 43). 

Billmeyer and Saltzman (1 98 I), Hunter and Harold (1 987), Sproson (1 983), and 
Smith (1978) for a more complete discussion of color spaces and formulas for 
transforming between them. Although the various color coordinate systems pro- 
vide an objective mechanism for making physical measurements that can be 
related to human color perception, they generally do not provide a reliable guide 
to the "color" of things. For example, the correspondence between a CIE XYZ 
response triple such as (0.9, 0.1, 0.1) and a color name such as "deep red" is a 
hazy one. Human perception of colors is indeed more than a simple association 
of colors with retinal responses on a point-by-point basis. The composition of 
the entire visual scene, or of parts of it (e.g., the background), can substantially 
alter the perceived color of an object. The fact that our eyes and brain make 
automatic adjustments to correctly interpret a scene makes it very difficult to 
establish concrete connections between simple physical measurements such as 
CIE or NTSC color coordinates and a human observer's interpretation of a color 
scene. 

CIE COLOR MEASUREMENTS OF WOOD 

Wood color research using the CIE standards has been performed for more than 
four decades. Descriptions of past wood color research and its methods have been 
presented elsewhere (Loos and Coppock 1964; Sullivan 1967a; Beckwith 1979). 
The CIE color measures have been used primarily to quantify natural wood colors, 
which were previously described only in qualitative terms such as light reddish 
brown or yellowish gray (Moon and Spencer 1948; Gray 196 1 ; Loos and Coppock 
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1964; Lakatosh 1966; Sullivan 1967b; Resch et al. 1968; Moslemi 1969; Mc- 
Ginnes and Melcarek 1976; Beckwith 1979). Other researchers have reported CIE 
values as part of investigations into color changes in wood due to various treat- 
ments (Shibamato et al. 196 la, b; Webb and Sullivan 1964; Brauner and Loos 
1968; Moslemi 1969; Nelson et al. 1969; Hiller et al. 1972; McGinnes 1975; 
Phelps and McGinnes 1983; Phelps et al. 1983; Rink 1987). 

Sullivan (1 967a, b) noted that wood color is basically two-dimensional within 
the standard CIE color space. He observed that differences in hue appear to be 
relatively small, but those in brightness and saturation much larger. This obser- 
vation led Beckwith (1979) to suggest that some other measure might be more 
appropriate for characterizing wood color. 

Researchers have also investigated viewing conditions that affect wood-color 
measurements. Surface orientation is one such condition. Investigations of the 
CIE values for radial, tangential, and transverse faces in the same species have 
indicated little or no difference between the radial and tangential faces (Sullivan 
196%; Resch et al. 1968; Beckwith 1979). Webb and Sullivan (1 964) found similar 
results for redwood [Sequoia sempervirens (D. Don) Endl.] and Engelmann spruce 
(Picea engelmannii Parry ex Engelm.), except that radial redwood sections were 
brighter; probable explanations for the similarity of these two surface types are 
the presence of rays on the radial face and the possibility of a larger proportion 
of earlywood being exposed on the tangential face. Lakatosh (1 966) reported radial 
and tangential color values for 3 1 species but drew no conclusions about differ- 
ences. Beckwith (1 979) generally found dominant wavelength and color purity to 
be the same for longitudinal and transverse faces, but brightness to be significantly 
lower on the transverse face. 

Because the amount of light reflected from a wood surface depends on the wood 
fiber angle with that surface (Matthews 1987; Soest 1987), the orientation of 
incident light relative to the wood surface is another variable affecting color 
measurement. Spectrophotometers typically use a 45/0 geometry (i.e., the light 
source is at a 45-degree angle to the surface to be viewed), with the detector normal 
to, and directly above, the area being illuminated; this arrangement helps reduce 
the specular reflection to the instrument. The reduction is important because 
diffuse reflection is generally considered to contain "truer" color information than 
specular reflection, which contains more of the illuminant's color. Raw wood, a 
semidiffuse reflector, has specular reflection values that fall between those shown 
in Fig. 4 for a shiny metallic and a diffuse surface. Because fiber angle is so 
important to reflectance, the alignment of the incident light with or across the 
grain affects colorimetric measurements. However, as previously suggested, in- 
vestigations have found no significant difference in CIE values except for the 
brightness coordinate, Y, which is greater when the surface is illuminated along 
the grain (Nakamura and Tackachio 1960; Gray 196 1 ; Moslemi 1969). Therefore, 
researchers generally average two readings, one along the grain and a second across 
the grain, or they take all readings in a specified direction, usually along the grain. 

Another variable affecting color measurement is moisture content (MC). Sul- 
livan (1 967b) investigated the differences in brightness, color purity, and dominant 
wavelength between the upper (saturated) and lower (dry) levels of MC in yellow- 
poplar (Liriodendron tuliplfera L.). He chose 40% MC for the saturated condition, 
10% for the dry. The results showed that regardless of the surface orientation 
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X 
FIG. 5.  CIE chromaticity diagram plotted with color coordinates for various wood species, as 

reported in the references cited in the accompanying text section. Samples measured with the same 
CIE standard source (A, B, or C) occupy relatively small areas that, though slightly overlapping, are 
distinct. 

(radial, tangential, or transverse), brightness increased, color purity decreased, 
and dominant wavelength remained the same after drying. The variances for the 
three parameters were found to significantly decrease at the lower MC. These 
results are attributed to the presence of free water above the fiber saturation point 
(FSP); however, the effects on color of changes in MC below the FSP have not 
been closely studied. Measuring the spectral reflectance of a wood specimen's 
surface while controlling its surface moisture content is difficult. Researchers have 
generally used specimens in equilibrium with the laboratory's environment or 
have ignored this factor's variance below the FSP because its contribution is small 
compared to that of other variance components, e.g., color differences between 
samples from the same board. The fact that Sullivan (1 967b) found greater uni- 
formity in CIE values for the dry yellow-poplar appears to support the idea that 
MC below the FSP can be ignored. Brauner and Loos (1968) cited this uniformity 
as their reason for making spectrophotometric readings at 0% MC in their study 
of induced color changes in black walnut (Juglans nigra L.) sapwood. 

Wood's spectral reflectance is the single inherent physical property involved in 
producing its color and is not completely described by the CIE coordinates. 
McGinnes and Dingeldein (1971) reported changes in reflectance at each of 10 
wavelengths spaced throughout the visible spectrum when studying the effect of 
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light, solvent extraction, and storage conditions on the color of eastern redcedar 
(Juniperus virginiana L.); using the same technique, McGinnes (1975) reported 
changes in reflectance at 14 wavelengths when assessing the influence of incan- 
descent and fluorescent light on the color of unfinished black walnut and eastern 
redcedar heartwood. Both studies found that wood exposed to light yellowed 
because of changes in the reflectance of light in both the red (longer) and blue 
(shorter) wavelength portions of the spectrum. Findings from these two studies 
suggest that information can be lost when only CIE color values are used to 
describe surface reflectance. A CIE chromaticity diagram plotted with wood color 
coordinates from the references cited in this section illustrates the relatively small 
area occupied by the values from numerous wood species (Fig. 5). Because the 
reflectance curve cannot be recreated from CIE values and some information 
about a wood surface can be lost in converting to CIE color space, it may be 
beneficial to report results in terms of the original reflectance curves, as some 
researchers have done, rather than as standard CIE values. Full reflectance curves 
are especially important for understanding how wood will appear to a human, or 
in a video image, under unusual lighting conditions. 

The research discussed so far has focused on differences between species, or 
sapwood and heartwood of the same species, for which the surface area investi- 
gated was considered homogeneous. Although this information is important, the 
color differences between surface features of the same species are far more im- 
portant for imaging purposes. A limited amount of work has been done in this 
area, most of it comparing earlywood and latewood. Moslemi (1969) investigated 
the color differences of loblolly pine (Pinus taeda L.) earlywood and latewood 
before and after exposure to sunlight. Webb and Sullivan (1964) found no color 
differences between Engelmann spruce earlywood and latewood; redwood early- 
wood and latewood did not differ in dominant wavelength, but the latewood was 
brighter and had a lower color purity than the earlywood. Lakatosh (1 966) reported 
values for brightness, dominant wavelength, and color purity for a comprehensive 
list of surface features for five different genera (no species names given): spruce 
(Picea), pine (Pinus), beech (Fagus), birch (Betula), and oak (Quercus). Although 
not described in standard CIE terms, the illuminant used is assumed to be CIE 
standard source B. He also reported coefficients of variation of 3% or less, which 
is very low compared to coefficients of variation for most wood properties, and 
suggested that this might make color useful for detecting and locating defects. 

APPLICATION OF COLOR TO MACHINE VISION 

The additional data present in a color image greatly increase the computations 
needed for analysis, so where color is not strictly required, it is usually avoided. 
This is one reason why the use of color in machine vision is only now being 
extensively explored. However, color is a critical feature of many products, either 
as an aesthetic attribute or an indicator ofproduct quality. Machine vision systems 
have been used to monitor color for aesthetics and quality (Aus et al. 1983; Zuech 
and Miller 1987; Daley et al. 1988), wherever possible with a monochrome system 
filtered so that the image is created and analyzed using only a narrow region of 
the spectrum (Daley et al. 1988). Of course, systems with such narrow spectra are 
not "true" color systems and have only limited application. Actual color systems- 
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for example, video camera systems-use most of the visible spectrum, much like 
the human eye. 

Recall that the human eye senses color through three different types of pho- 
toreceptors in the retina. Similarly, a color video camera processes a color image 
comprising at least three separate, spatially aligned images of the same scene, each 
in a different primary color. The primary images can be taken sequentially, using 
a single monochrome camera and three separate filters, or simultaneously, using 
a color camera with one to three sensors. The monochrome camera allows many 
different types of filters and potentially has perfect image registration, but is slow 
by most application standards. Color cameras directly separate simultaneous R, 
G, and B signals for each pixel, but ones that are defined by broadcast television 
standards. Three-sensor color cameras have only a single filter on each sensor, 
but one- and two-sensor cameras must be fitted with masks of alternating stripes 
of filter material. The two- and (especially) three-sensor cameras require a rather 
complex image-splitting and registration system, which makes them more expen- 
sive but also helps them produce a higher quality image. 

The type of sensor used also influences the image. The two basic sensor types, 
which have different spectral sensitivities, are the photoconductor-based image 
tube and the silicon solid-state sensor. Image tubes typically are more responsive 
in the green or blue portions of the spectrum, depending on the photoconductive 
material used in their construction, whereas solid-state sensors are most respon- 
sive in the red and least in the blue. Thus, if the blue portion of the spectrum is 
of special interest, then the image tube would give a better signal-to-noise ratio; 
but if the far-red portion of the spectrum is of interest, a solid-state sensor would 
be preferred. Some cameras also use linear masking or matrixing to better repro- 
duce the NTSC color matching functions for each of the R, G, and B signals by 
mixing appropriate amounts of individual signals with each other. This feature 
is most important when making colorimetric measurements of a scene, but re- 
quires a more expensive camera with a high signal-to-noise ratio. 

Because color video systems are designed to please human observers, some 
features may cause concern for machine vision applications. A color camera's 
white balance is one such feature. The color of a scene changes with the chro- 
maticity of its illuminant (e.g., from tungsten to daylight), yet the color perceived 
by a human observer remains remarkably constant, especially for white surfaces 
(see color constancy, discussed earlier). Achieving constancy, within limits, is the 
function of a camera's white balance. While focused on a white surface, the camera 
adjusts the gain of the R and B signals so they equal the magnitude of the G 
signal. For example, if CIE illuminant A is used to white-balance a camera, the 
camera will increase the B signal's gain to compensate for the low levels of blue 
light found in this light source. These signal levels become the reference white 
point for the camera (CIE illuminant C for NTSC cameras), and are then mapped 
by the display device to its reference white point (CIE D,, for most color monitors). 
Chromatic points are similarly mapped in relation to these white points. This 
feature is necessary to produce usable color rendition for color television, but is 
critical with some color-based machine vision applications (Aus et al. 1983). For 
machine vision applications, it might be helpful to white-balance the camera using 
a colored surface that will cause the signal's gain to be increased, or at least not 
decreased, for that portion of the spectrum of interest, or to disable the white- 
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balance circuit entirely and set the signals' gains manually. Even though the 
camera's white balance is meant to compensate for changes in light sources, care 
must always be used in selecting light sources because increasing gain to com- 
pensate for low light levels will decrease the signal-to-noise ratio. 

Another feature that can adversely affect machine vision applications is gamma 
correction. Recent video cameras have sensors that produce a nearly linear re- 
sponse between the incident light flux and the output voltage, whereas the phos- 
phors in display monitors fluoresce nonlinearly with the input energy (Sproson 
1983). To eliminate the need to include a nonlinear amplifying circuit in every 
television receiver, a gamma correction circuit in the camera modifies the signal 
to the monitor so that it displays the proper color intensity. This approach makes 
sense if a human is viewing the image from a monitor, but not if a computer is 
analyzing it; if the R, G, and B signals are at different input levels, the relationship 
between them will be distorted by the gamma circuit. 

Yet another feature that could adversely affect machine vision applications is 
contour correction. This signal distortion is used to accentuate the edges of an 
image (make an image appear "sharp") by adding an impulse to the R, G, and B 
signals when a high frequency change occurs in either direction in the G signal. 
In some machine vision applications, this may distort the computer's analysis of 
the image if no such edges are present in the R or B signals. 

Given the potential for white balance, gamma correction, or contour correction 
to cause problems in machine vision applications, users should probably inves- 
tigate their effects on a specific application before selecting a camera. The effect 
of these "distortions" on systems that detect or segregate may be minimal, but 
can be considerable on systems meant for colorimetry, such as color matching 
(Wandell 1986; Lee 1988). 

Once a color machine-vision system has created an image, it can use a variety 
of techniques to analyze it. As with gray-scale systems, there is no single method 
that performs adequately for all applications. However, many of these techniques 
ignore image brightness and concentrate instead on image chromaticity (e.g., I 
and Q) to produce a one- or two-dimensional space for image analysis, which 
minimizes data manipulation while preserving essential image information (Keil 
1983; Kelly and Faedo 1985; Shearer and Holmes 1987; Slaughter and Harrell 
1987). Where the application involves a small set of distinctively different colored 
features with virtually no variation, pattern matching techniques can be used (Ito 
1976; Romanik 1988). If variability associated with the measured colors is small, 
then multispectral classification methods, such as minimum distance or maximum 
likelihood, can be employed (Fukada 1980; Showengerdt 1983). Even texture 
analysis, similar to spatial gray-level dependency, can be used for color image 
analysis (Shearer and Holmes 1987). All of these techniques, but especially the 
multispectral methods, work best when the image input signals have considerable 
spectral separation (Estes et al. 1983). However, the standard color matching 
functions overlap extensively and are somewhat correlated (see Fig. 1). The effect 
of this correlation can be minimized by selecting the color space whose values 
for the image features of interest are most different. 

Several researchers have indicated the need to determine the best color space 
for a specific machine-vision application (Nelson et al. 1969; Yachida and Tsuji 
197 1; Hiller et al. 1972; Ohlander 1975). Ohlander (1 975) and Ohta (1 985) have 
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investigated the most appropriate one for outdoor natural scenes. Ohta et al. 
(1 980) used a dynamic Karhunen-Loeve (K-L) transformation to select the linear 
combinations of the R, G, and B signals to be used in segmenting an image. These 
combinations are selected so that they are mutually orthogonal and produce 
maximal variance. This method assumes that the linear combination with the 
largest variance has the best discriminant power in separating segments--an as- 
sumption valid for Ohta et al.'s (1 980) investigation because the entire image was 
being segmented into all its possible parts. These researchers found the linear 
combinations (R + G + B)/3, (R - B)/2, and (2G - R - B)/4 common to their 
image set of outdoor natural scenes, with most of the information contained in 
the first two transforms. Comparing the linear combinations to a set of seven 
standard color spaces, they determined that the combinations were as effective 
and more efficient to implement. 

Using color systems to detect defects in wood has been investigated. Conners 
et al. (1983, 1984a, b) extended their work with gray-scale vision systems by 
reviewing the literature relating to wood color and how color might be used with 
machine vision (Conners et al. 1985). This work also included some experiments 
with a gray-scale system and color filters to determine the effect of adding color 
information to their defect-classifying algorithm, which used Bayesian decision 
theory to classify 0.5- by 1-inch areas of boards into clear and defect categories. 
Using only the red and blue data was nearly as effective as using the red, green, 
blue, and brightness data. 

Funck et al. (1987), Butler et al. (1989), and Forrer et al. (1988, 1989) have 
also used color data with a number of algorithms to identify likely defect areas 
in images of Douglas-fir veneer. These algorithms differ from those of Conners 
et al. (1985) in their use of the color data. First, they employ two linear combi- 
nations, (R + G + B)/3 and (R - B)/2, proposed by Ohta et al. (1980) for 
segmenting outdoor natural scenes because preliminary investigations with K-L 
analysis ofwood images produced similar combinations. Ohta's third combination 
was not used because it provided little additional information about defects. 
Second, the algorithms use adaptive statistical methods instead of Bayesian theory. 
Conners et al. (1987) also proposed an adaptive method for classifying image 
segments with the red and blue data. These investigations (Conners et al. 1987; 
Funck et al. 1987; Butler et al. 1989; Forrer et al. 1988, 1989) further reinforce 
Sullivan's (1 967a) observation that wood color is two-dimensional. 

RECOMMENDATIONS 

Even though this discussion has been fairly general, some specific recommen- 
dations can be made for using color-based machine vision in wood manufacturing: 

1) Given the importance of fiber angle on specular reflection and the fact that 
this angle cannot generally be carefully controlled, a highly diffuse light source 
should be preferred to a collimated one. 

2) Rough surfaces should be avoided wherever possible. They not only create 
shadows, but also increase the amount of specular reflection, which may com- 
plicate image analysis. A change in process steps may even be warranted to ensure 
a smooth, fresh surface, as Conners et al. (1985) have indicated. 

3) Special consideration should be given to selecting a light source with the 
appropriate spectral power distribution. Because many wood species typically 
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have high reflectance in the yellow-red portions of the spectrum, as indicated by 
either direct spectrographic studies (Moon and Spencer 1948; McGinnes and 
Dingeldein 197 1; McGinnes 1975; Funck et al. 1987) or dominant wavelength 
measurements (Gray 196 1 ; Loos and Coppock 1964; Lakatosh 1966; Sullivan 
1967b; Resch et al. 1968; Moslemi 1969; Beckwith 1979), selecting a light source 
with adequate energy in those areas seems to be a good first choice (incandescent 
lights have high energy levels in this range). However, if, for example, the blue 
portion of the spectrum were important for imaging a specific feature, then a light 
source with adequate energy in that portion would be desired (high-frequency 
fluorescent lights might be a good choice in this instance). Even though a camera's 
white balance is partly intended to compensate for deficiencies in lighting, care 
must be taken to avoid decreasing signal-to-noise ratios to the point where they 
affect image quality. 

4) Possible adverse effects associated with gamma or contour correction must 
be minimized whenever a standard color video camera is used. A camera system's 
gamma correction should probably be disabled for most, if not all, machine vision 
applications; it must be disabled for colorimetry purposes such as color matching. 
Similarly, contour correction should be disabled for most wood-manufacturing 
applications because it tends to accentuate the grain patterns in clear wood, which 
often confuses image analysis. 

5) Finally, the best color space for the purpose at hand should always be de- 
termined. The most appropriate color space for image analysis may differ from 
that initially produced by the camera's signals. Although further research is re- 
quired for generalization, workers should keep in mind that wood color, like color 
in outdoor natural scenes, appears to be two-dimensional in most color spaces- 
a fact that could greatly simplify machine vision applications in the wood industry. 
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