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ABSTRACT

Fiber lengths were analyzed for random samples of medium-density fiberboard (MDF) fibers and wood
particles taken from eleven different populations. For six of the samples, the lognormal distribution fit the
data, while the Weibull distribution did not. For three of the samples, the Weibull fit the data, while the
lognormal did not. For two of the samples, both the lognormal and Weibull fit the data. Conclusions were
based on hypothesis tests imposing a bound of 0.05 on the probability of making a Type I error for each
test. Tests were based on large sample 95% nonparametric simultaneous confidence bands for the un-
derlying cumulative distribution functions of the data.

Keywords: Goodness of fit tests, MDF fiber, maximum likelihood estimation, non-parametric confi-
dence bands, probability plots, statistical analyses.

INTRODUCTION

Several studies have established the effect of
wood fiber dimension and morphology on cer-
tain mechanical properties (e.g., bending
strength and internal bonding strength) of wood
fiber-based products such as paper, paper board,
insulation board, medium-density fiberboard

(MDF), hardboard, and wood-polymer compos-
ites (Takahashi et al. 1979; Mark and Gillis
1983; Eckert et al. 1997; Marklund et al. 1998;
Lee et al. 2001; Myers 2002; Huber et al. 2003).
However, suitable statistical functions that can
be used to accurately describe wood fiber length
distribution over various fiber length regimes are
still missing.

For fiber dimension determination, the gen-
eral measurement methods include microscopy,† Member of SWST.
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projection, screen classification (e.g., Bauer-
McNett classifier), coulter counter and other
particle size analyzers (e.g., Kajaani FS-200,
Galai CIS-100), and image analyzers (Mark and
Gillis 1983; Bentley et al. 1994; Carvalho et al.
1997). Particle size analyzers provide the most
popular automated techniques for fiber length
measurement in the pulp and paper industry.
Compared with other automated techniques, im-
age analyzers have high accuracy, fast speed,
and high reliability for determining fiber length,
width, surface area, and coarseness (Mark and
Gillis 1983). Image analyzers are, perhaps, most
useful when large numbers of fibers must be
accurately detected and measured.

Rotation age, especially juvenile and adult
woods (Haygreen and Bowyer 1994), and
growth-accelerating treatments such as fertiliza-
tion (Bannan 1967) and irrigation (Klem 1968;
Murphey and Bowier 1975) have an effect upon
average fiber dimensional sizes in stem. Indi-
vidual wood fibers are different in shape and
size for different tree species. Even in the same
tree species and the same stem, individual fibers
may have different lengths for different loca-
tions (e.g., height, distance from pith, early and
late woods, and heart- and sapwoods). Therefore,
fiber dimensional size (e.g., length, diameter or
width, and surface area) in wood is inherently
continuous in distribution.

As early as 1972, Tasman (1972) analyzed
fiber lengths with a Bauer-McNett classifier. He
discovered that the distribution of fiber fractions
is approximately normal. It was also reported
that fiber length distribution for papermaking
furnish is approximately lognormal (Yan 1975;
Dodson 1992; Kropholler and Sampson 2001).
However, the data were simply fit with the log-
normal distribution in these publications. The
details on statistical analyses are not available.

Mark and Gillis (1983) used the Erlang family
of distributions (a subset of the Gamma family)
to describe the lengths of fibers from a bleached
softwood kraft sheet. They applied chi-square
goodness of fit tests to both the Erlang probabil-
ity density function (pdf) and the Erlang cumu-
lative distribution function (cdf). The resulting
P-values were 0.870 and 0.947, respectively.

They concluded that the Erlang model provided
an excellent fit to this data set.

Failure to properly characterize an underlying
distribution can lead to drastic errors in both
analytical and simulation models (Law and Kel-
ton 2000). The Weibull and lognormal families
of distributions have been used with great suc-
cess to model positively (or right) skewed ran-
dom processes when the associated random vari-
able is bounded below (right skewed refers to a
process for which a large random sample would
produce a histogram with the right or upper tail
“stretched out” more than the left or lower tail).
Most of the modeling has been empirical in na-
ture, although mechanistically the Weibull arises
naturally as the minimum observation for a cer-
tain class of distributions, while the product of a
sufficient number of positive random variables,
none of which dominates the others, is lognor-
mal by the Central Limit Theorem (see Bury
1975; Johnson et al. 1994; Kalbfleisch and Pren-
tice 2002). The Weibull distribution may also
provide the added flexibility required for an ac-
curate analysis when theoretical considerations
indicate that an exponential distribution may be
adequate (Johnson et al. 1994). The Weibull and
lognormal distributions may be preferable to
other distributions since both families assume a
wide variety of shapes, and analyses are trac-
table for both the Weibull and lognormal. This is
not surprising, since the lognormal is a function
of the normal, which has been studied exten-
sively, while the cumulative distribution for the
Weibull is available in closed form; furthermore,
the natural logarithm of each produces a location
and scale parameter family of distributions (see
SAS Institute Inc. 2002; Meeker and Escobar
1998). In addition, the Weibull and lognormal
are “complementary” families of distributions in
the following sense. When fitting both distribu-
tions to the same data set by the same method,
the fitted lognormal pdf invariably has a heavier
right hand tail than the fitted Weibull pdf, while
the fitted Weibull pdf takes on larger values in
the vicinity of zero (Law and Kelton 2000;
Meeker and Escobar 1998). Two situations are
then possible. Either one or both adequately fit
the entire data set. If neither is satisfactory for
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the entire data set, then it is plausible that one of
the two would fit large data values, the other
would fit small data values, and both would fit
the middle values. In either situation, by fitting
both the Weibull and lognormal distributions,
the process generating the data can be success-
fully modeled across the entire spectrum of the
data.

The MDF fibers used in this study were cre-
ated by a thermal-mechanical grinding process.
The lengths of wood fibers obtained from such a
process are bounded below by zero, since no
fiber length can be negative. Such a process will
produce extremely short fibers (having lengths
close to zero). Most of the fibers would have
lengths clustering around a positive value. The
majority of naturally occurring long fibers
would be crushed into shorter ones by the grind-
ing process. Some long fibers would survive, but
relatively few when compared to fibers of
shorter length, resulting in a long right hand tail
for the distribution of lengths. Thus, the distri-
bution of fiber lengths should be continuous,
bounded below by zero and skewed to the right.
For this reason, Weibull and lognormal distribu-
tions were fit to each of the data sets of this
study. The goodness of fit was determined for
each. Details of all statistical analyses are pre-
sented.

EXPERIMENTAL

An imaging system was used for the determi-
nation of wood fiber length. This system con-
sisted of a Leica MZFIII microscope (Leica Mi-
crosystems GmbH, Wetzlar, Germany), a CCD
digital camera (Diagnostic Instruments, Sterling
Heights, MI), a �-Lux 1000 optical lighter
(Volpi MFG. USH Co., Auburn, NY), a RT
SP402-115 power supply (Diagnostic Instru-
ments, Sterling Heights, MI), and a computer.
The magnification number of the imaging sys-
tem was 100 times.

The MDF fibers and wood particles were ob-
tained in approximate 100 g packages from
seven different sources. Several sources pro-
vided more than one package due to differences
in fiber size, usages, or manufacturing lines for
a total of eleven packages, designated by the

letters A through K (Table 1). From each pack-
age, at least 500 fibers or particles were ran-
domly sampled, oven-dried at 80ºC for 24 h, and
sealed in plastic bags. Exact sample sizes for all
packages appear in Table 1. Fiber moisture con-
tent was kept between three and five percent.
From each plastic bag, the fibers were removed,
placed evenly on a glass dish, and clearly fo-
cused under the microscope. The optical lighter
was adjusted for better picture quality. With the
Spot Advance imaging software (Diagnostic In-
struments, Sterling Heights, MI), the image was
then recorded with the digital camera, and the
length of each fiber was measured in millimeters
using the Image-Pro Plus software (Media Cy-
bernetics, Inc., Silver Spring, MD).

PROBABILITY DISTRIBUTION MODELS

The histograms of all wood fiber length data
sets of this study were skewed to the right. The
histograms for four of the data sets are represen-
tative of the shapes for all histograms and are
given in Fig. 1. Because of the (right) skewness
of the histograms, the Weibull and lognormal
distributions were chosen to fit the data sets of
this study.

A random variable X follows a Weibull dis-
tribution if and only if the cdf for X is

G�x; �, �� = �1 − exp�−�x����� x � 0
0 x � 0

(1)
where both � and � are positive numbers. The

TABLE 1. Summary of fiber information.

Package
designation

Fiber
source

Fiber-based
producta

Fiber
type

Number of
fibers per

sample

A 1 MDF Core 503
B 1 MDF Face 505
C 2 Particleboard Core 559
D 3 MDF Core 512
E 3 MDF Face 512
F 3 MDF Face/core 527
G 4 Flakeboard Core 595
H 5 MDF Face/core 504
I 6 MDF Face/core 505
J 6 MDF Face/core 508
K 7 MDF Face/core 503

a MDF � Medium density fiberboard.
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parameter � is called the shape parameter, while
� is called the scale parameter.

The pdf of the Weibull distribution

g�x; �, �� = �� �x�−1���� exp�−�x����� x � 0
0 x � 0

(2)

is obtained by differentiating G(x; �, �) with
respect to x.

The random variable X follows the lognormal
distribution if and only if Y � lnX follows a
standard normal distribution N(µ, �2). The pdf
for X is

h�x; �, �2� =

�
1

x�2��2
exp�−

�ln x − ��2

2�2 � x 	 0

0 x 
 0;
(3)

µ is the location parameter (-� < µ < �) and � >
0 is the scale parameter. There is no closed form
expression for the cdf H(x; µ, �2) � ∫x−�h(t; µ,
�2) dt of X.

METHOD OF FITTING DISTRIBUTIONS

For each of the eleven data sets, location and
scale parameters for the lognormal distribution,
and shape and scale parameters for the Weibull
distribution were estimated by the method of
maximum likelihood using the RELIABILITY
procedure in SAS®9.0 (SAS Institute Inc.
2002). Numeric values for the estimates appear
in Table 2.

We shall now briefly describe the method of
maximum likelihood. For detailed discussions of

FIG. 1. Histograms of fiber length distribution for packages A, D, F, and G.
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maximum likelihood estimation, see Bickel and
Doksum (1977), Casella and Berger (2002),
Lawless (2003), Meeker and Escobar (1998),
and Mood et al. (1974).

The likelihood function L(� | x ) for a random
sample X � {X1, X2, . . . , Xn} of a random vari-
able X is the joint pdf f(x; �) for X as a function
of the parameter vector given X = x. The maxi-
mum likelihood estimate of � is that value of �,
say �̂, which maximizes L(� | x) for a fixed
sample x; i.e.,

L���x� 
 L��̂�x� (4)

for all possible values of �. As a function of X,
the random vector �̂ � �̂(X) is called the maxi-
mum likelihood estimator of �, while the nu-
meric value of �̂(X), namely �̂(x), is referred
to as the maximum likelihood estimate (MLE)
of �.

For many distributions, including the two pa-
rameter Weibull and lognormal distributions
used in this study, the maximum likelihood es-
timators exist for any sample size. Under mild
regularity conditions on the (joint) pdf for X, �̂
converges in probability to �. Also, under mild
regularity conditions, the maximum likelihood
estimator �̂ converges in distribution to a mul-
tivariate normal random vector having mean
vector � and covariance matrix the inverse of the
Fisher information matrix. This allows confi-

dence intervals for � to be constructed and tests
of hypotheses concerning � to be made using the
chi-square and standard normal distributions, re-
spectively, for large sample sizes. For small to
moderate sample sizes, maximum likelihood es-
timators perform at least as well as other esti-
mators.

Obtaining numeric values for maximum like-
lihood estimates invariably requires the use of a
computational algorithm (usually imbedded in a
software package such as SAS or S-Plus), since
closed form expressions are not available except
in a few elementary cases. In the majority of
situations, MLE’s can easily be obtained using
the appropriate software packages. However,
there are exceptions. It is possible that (a) the
likelihood functions has several relative maxima
(as opposed to a single global maximum), (b) the
log of the likelihood function is unbounded, or
(c) the likelihood function has a global maxi-
mum on a boundary of the parameter space.
These situations present computational difficul-
ties and should be analyzed with extreme care.

THE STATISTICAL TEST FOR GOODNESS OF FIT

Instead of one of the traditional goodness of
fit tests, several of which are identified by name
in the next section, we shall use a procedure that

TABLE 2. Summary of distribution fitting*

Package designation/
**underlying distribution

Weibull Lognormal

Shape
�

Scale
�

Maximum
loglikelihood SSE

Location
�

Scale
�

Maximum
loglikelihood SSE

A/L 1.6875 1.4172 −493.6611 1.25454 0.0496 0.5878 −446.4296 0.15591
B/L 1.4946 1.2591 −564.6805 0.46562 −0.1175 0.7021 −537.9290 0.07897
C/W 2.5171 6.5311 −345.0989 0.32381 1.6619 0.4511 −348.2235 0.21108
D/W 1.4855 1.5541 −603.7361 0.23316 0.0539 0.8196 −624.6386 0.86972
E/W 1.4625 1.4760 −603.6720 0.28956 0.0070 0.8020 −613.5521 0.50384
F/L, W 1.8753 1.5486 −486.6175 0.43868 0.1430 0.6109 −488.0446 0.24566
G/L 2.0995 5.6332 −452.2452 1.34597 1.4897 0.4712 −396.5792 0.07008
H/L 1.5382 1.0966 −545.9236 0.74569 −0.2418 0.6719 −514.7229 0.17077
I/L 1.3363 1.1096 −620.7313 1.05338 −0.2844 0.7667 −584.4324 0.35276
J/L 1.3224 1.3496 −633.3904 0.65579 −0.0982 0.7987 −606.6133 0.27381
K/L, W 1.6548 1.4602 −522.1455 0.23869 0.0512 0.6709 −512.9337 0.33959

* Weibull and lognormal distributions were fit to each of eleven sets of fiber lengths.
** Results of testing H0: the lognormal (or Weibull) distribution fits the data versus HA: the lognormal (or Weibull) distribution does not fit the data, P(I) �

0.05 for each individual test. W � accept H0 that the Weibull distribution fits the data. L � accept H0 that the lognormal distribution fits the data.
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is both analytical and graphical, and is based on
a large sample simultaneous (1 − �)·100% con-
fidence band for the underlying cdf F(x) of a
random variable X. The confidence band is of
the form

F̂�x� � e* �x; 1 − ��2��F̂�x��1 − F̂�x���n,
(5)

where F̂(x) is a nonparametric sample estimator
of F(x) based on a random sample of size n from
X. The analytical part of the procedure is the
determination of e*(x; 1 − �/2) for each value of
x. The graphical part consists in examining the
probability plot (for a specific family of prob-
ability distributions) of F̂(x) together with the
confidence band. Formally the null hypothesis
that F(x) is a member of the family of probabil-
ity distributions is rejected in favor of the alter-
nate hypothesis (with the bound of � on the
probability of making a Type I error; i.e. P(I) �
�) if and only if it is not possible to construct a
straight line extending the entire range of the
data (i.e., from the smallest Xi to the largest Xi)
that lies entirely within the confidence band. The
alternate hypothesis is the negation of the null;
i.e., that F(x) is not a member of the family of
probability distributions. The reader is referred
to Meeker and Escobar (1998) for a detailed
discussion of this procedure.

Weibull and lognormal probability plots of
F̂(x) together with the 95% confidence band
were constructed for each of the eleven data sets
of this study using the SPLIDA package in
S-Plus®7.0 (Insightful Corporation, 2005).
SPLIDA is fully automated. Once the user speci-
fies the family of distributions and the level of
confidence, SPLIDA automatically calculates
F̂(x), e*(x; 1 − � /2), and √F̂(x)[1 − F̂(x)]/n, and
then prints out the requested probability plot of
F̂(x) together with the confidence band. It is,
however, up to the user to determine whether or
not it is possible to construct a straight line
through the band. Each of our original probabil-
ity plots of the 95% bands filled an 8-inch by
11.5-inch sheet of paper. There was no difficulty
in deciding whether or not straight lines could be
drawn through the bands for plots of this size.

Should there be a problem, we recommend in-
creasing the level of confidence until the bands
expand sufficiently in size so that they clearly
accommodate a straight line. Then reverse the
process. Gradually decrease the level of confi-
dence until it is clear that the bands contain no
straight lines. In this manner, the P-value of the
test can at least be approximated.

THREE PROCEDURES FOR COMPARING

FITTED DISTRIBUTIONS

Likelihood ratio, chi-square, Kolmogorov-
Smimov, Cramer-von Mises, Shapiro-Wilk,
Anderson-Darling are but several of many tra-
ditional tests available for determining goodness
of fit. Depending upon the distributional charac-
teristics of interest and the objectives of the
study, some goodness of fit tests may be more
appropriate than others. Some have more power
than others against specific alternatives. Some
emphasize tail behavior, rather than behavior at
the center of distribution. Thus, results may dif-
fer, depending on the test used. A common
drawback of all such tests is that they all reject
suitable models if the sample size is sufficiently
large. For detailed discussion of these issues, the
reader is referred to Law and Kelton (2000),
Lawless (2003), and Vose (2000).

In this article, the goodness of fit test based on
the simultaneous 95% confidence band of the
previous section is adopted as the “gold stan-
dard,” and supplemented by visual inspection of
the probability plot of the fitted and nonparamet-
ric cdf’s (discussed later in this section). Results
from the other two procedures of this section are
compared to those obtained from the simulta-
neous 95% confidence band.

Comparing maximum loglikelihood values

The maximum likelihood estimators of the pa-
rameters are obtained by maximizing the likeli-
hood functions, or, equivalently, the (natural)
logarithm of the likelihood functions. For a
given data set, two statistics for comparing the
Weibull fit to the lognormal fit are the maximum
values of the loglikelihood functions lnL(�̂, �̂|X)
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for the Weibull and lnL(µ̂, �̂| X) for the lognor-
mal. If lnL(µ̂, �̂|X) > (or <) lnL(�̂, �̂|X), con-
clude that the lognormal (or Weibull) fit is pref-
erable to the Weibull (or lognormal) fit. This
selection procedure is based on the likelihood
ratio test.

Comparing residual sums of squares

Let X1, X2, . . . , Xn be a random sample of X.
Let F̂(x) be a nonparametric sample estimator
of F(x), the cdf of X. Let Ĝ(x) � Ĝ(x; �̂, �̂)
and Ĥ(x) � Ĥ(x; µ̂, �̂2) be the fitted Weibull and
lognormal cdf’s, respectively. Define SSEWeibull

∑n
i�1[F̂ (xi) − Ĝ (xi)]2 and SSElognormal �

∑n
i�1[F̂(xi) − Ĥ(xi)]2. Since SSE consists of the

sum of the squared deviations between the fitted
cdf and the nonparametric sample estimator of
the cdf, it measures how well the fitted distri-
bution describes the data set over the en-
tire range of the data. Thus, SSEWeibull and
SSElognormal may be used to compare the two
fitted distributions over the entire range of the
data. If SSElognormal < (or >) SSEWeibull, then the
sum of the squared deviations between the fitted
lognormal (or Weibull) cdf and the nonparamet-
ric sample estimator of F(x) is smaller than
the corresponding sum for the fitted Weibull
(or lognormal) cdf, so that the fitted lognormal
(or Weibull) cdf is “closer” to the nonpara-
metric sample estimator of F(x) than the
fitted Weibull (or lognormal) cdf is. In this
case, declare the lognormal (or Weibull) fit pref-
erable to the Weibull (or lognormal) fit. This
procedure is similar to that of Cramer-von
Mises.

SSE values for each package were easily ob-
tained using the basic calculation capabilities of
SAS. All fitted Weibull cdf’s were obtained
from Eq. (1) using the SAS exponential func-
tion. The standard normal cdf function of SAS
was required to get numeric values for each fit-
ted lognormal cdf, since, unlike the Weibull,
there is no easily implemented formula for the
lognormal cdf.

Comparing probability plots

Visual assessment of goodness of fit may be
made by inspection of the appropriate probabil-
ity plots (Meeker and Escobar 1998). When the
fitted lognormal (or Weibull) distribution func-
tion is plotted on lognormal (or Weibull) prob-
ability paper, the fitted distribution function ap-
pears as a straight line. When the nonparametric
sample estimator F̂(x) of F(x) is plotted together
with the fitted distribution, the closer F̂(x) is to
the fitted distribution, the better is the fit. For a
given data set, then, whichever of the lognormal
or Weibull probability plots has F̂(x) closer to
the fitted distribution provides the better fit to
the data. Weibull and lognormal probability
plots of the fitted distributions together with the
nonparametric sample estimators of the cdf’s
were obtained using the S-Plus/SPLIDA com-
puting package.

RESULTS AND DISCUSSION

As previously mentioned, large sample 95%
nonparametric simultaneous confidence bands
were constructed for each of the eleven sets of
fiber lengths and plotted on both lognormal and
Weibull probability paper using the SPLIDA
software package. Henceforth, these large
sample 95% nonparametric simultaneous confi-
dence bands will be referred to as the 95% log-
normal and Weibull confidence bands, respec-
tively.

For the data obtained from packages A, B, G,
H, I, and J, it is possible to construct straight
lines extending the entire range of the data that
lie entirely within the lognormal confidence
bands, while the curvature of the Weibull con-
fidence bands prohibits the construction of any
such lines that lie entirely within them. (For il-
lustrative purposes, the 95% confidence bands
for the data from packages A and G are shown in
Figs. 2 and 3). Therefore, “H0: the data come
from a lognormal distribution” cannot be re-
jected with P(I) � 0.05, while “H0: the data
come from a Weibull distribution” must be re-
jected in favor of “HA: the data do not come
from a Weibull distribution” with P(I) � 0.05
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for the data sets from packages A, B, G, H, I,
and J. Thus, with P(I) � 0.05 for each test, the
lognormal distribution provides an adequate fit
to the fiber length data sets from these packages,
while the Weibull distribution does not.

The opposite is true for the fiber lengths from
packages C, D, and E. Straight lines that extend
from the smallest length to the largest length
may be placed through the 95% Weibull confi-
dence bands for the data from packages C, D,
and E, while the curvature of the corresponding
95% lognormal confidence bands prohibits the
construction of any such straight lines that lie
entirely within them. (The 95% confidence
bands for the fiber lengths from package D are
given in Fig. 4). Thus, with P(I) � 0.05 for each
test, the Weibull distribution adequately fits the
fiber lengths from these three packages, while
the lognormal distribution does not.

For the fiber lengths from packages F and K,
both the lognormal and Weibull distributions ad-
equately describe the data with P(I) � 0.05.
Straight lines extending the entire range of the
data may be placed within the 95% Weibull con-
fidence bands and the 95% lognormal confi-
dence bands for these two data sets. (The 95%
lognormal and Weibull confidence bands for the
fiber lengths of package F are given in Fig. 5).

The lognormal distribution fit eight of the
eleven data sets of this study with P(I)�0.05,
while the Weibull distribution fit five with P(I)
� 0.05. For the smallest fiber lengths, each of
the eleven fitted Weibull distributions was larger
than the corresponding nonparametric sample
estimator of the cdf, with the differences be-
tween the two increasing in magnitude as fiber
length decreases to the minimum length. These
differences are larger than the corresponding dif-

FIG. 2. Weibull and lognormal probability plots with fitted distributions (upper and lower left) and with simultaneous
95% confidence bands (upper and lower right) for package A.
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ferences between the fitted lognormal cdf and
the nonparametric sample estimator of the cdf.
This phenomenon is clearly illustrated in Figs. 2,
3, 4, and 5. For each set of fibers from packages
A, G, D, and F, the fitted Weibull cdf’s are
greater than the corresponding nonparametric
sample estimators of the cdf’s for those fibers
less than 0.65 mm, 3.0 mm, 0.25 mm, and 0.55
mm in length, respectively. The corresponding
fitted lognormal cdf’s are closer to the nonpara-
metric sample estimators of the cdf’s for these
fiber lengths than are the fitted Weibull cdf’s.
For estimating probabilities at the smaller fiber
lengths, then, it would appear that estimates cal-
culated using the fitted lognormal distribution
would be more accurate than those calculated
using the fitted Weibull distribution, even when
the Weibull distribution and not the lognormal

was judged to fit the data set [each at P(I) �
0.05].

An examination of the probability plots of the
fitted Weibull and lognormal cdf’s for the fibers
from packages C, D, and E reveals that for all
three packages, the fitted lognormal cdf’s are
smaller than the nonparametric sample estima-
tors of the cdf’s for the longest fibers. For ex-
ample, the fitted lognormal cdf is smaller than
the nonparametric sample estimator of the cdf
for the fibers of package D having length greater
than 2.7 mm (see Fig. 4). Packages C, D, and E
were the very packages for which the fiber
lengths were judged to follow the Weibull dis-
tribution but not the lognormal (all tests being
conducted with P(I) � 0.05). It may be con-
cluded, then, that the fit of the lognormal distri-
bution to these data sets was rejected because of

FIG. 3. Weibull and lognormal probability plots with fitted distributions (upper and lower left) and with simultaneous
95% confidence bands (upper and lower right) for package G.
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the poor fit to the longest fibers. For the data sets
from packages D and E, the Weibull cdf’s were
virtually identical to the nonparametric sample
estimators of the cdf’s for the longest fibers, and
very close for package C, although not identical.
The clear superiority of the fitted Weibull cdf’s
to the fitted lognormal cdf’s at the largest fiber
lengths was also observed for the fibers from
packages F and K.

The relative magnitudes of SSElognormal and
SSEWeibull are generally consistent with the con-
clusions of the statistical hypothesis tests for de-
termining goodness of fit. For the data sets ad-
equately fit by the lognormal distribution but not
the Weibull (i.e. the data sets obtained from the
fibers from packages A, B, G, H, I, and J),
SSElognormal was considerably smaller than the
corresponding SSEWeibull, especially for pack-

age G (see Table 2). For packages D and E, for
which the Weibull distribution fit the data sets
but the lognormal did not, SSEWeibull was con-
siderably less than SSElognormal. For the data sets
from packages F and K, both distributions ad-
equately fit the data according to the hypothe-
sis tests. Therefore, it is not surprising that
SSElognormal is the smaller of the two for pack-
age F, while SSEWeibull is the smaller of the two
for package K. For the data set from package C,
SSElognormal is considerably smaller than
SSEWeibull, so that SSE criterion would select
the lognormal distribution over the Weibull. Yet
the Statistical hypothesis tests chose the Weibull
distribution as adequately fitting the data, and
not the lognormal (with P(I) � 0.05 for each).
The curvature in the probability plot of the non-
parametric sample estimator of the underlying

FIG. 4. Weibull and lognormal probability plots with fitted distributions (upper and lower left) and with simultaneous
95% confidence bands (upper and lower right) for package D.
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cdf relative to the fitted lognormal cdf reveals
that the lognormal distribution does not provide
an acceptable fit to this data set. Thus, SSE by
itself cannot always be relied upon to select the
appropriate fit.

The maximum values for the loglikelihood
functions were in perfect agreement with the hy-
pothesis tests based on the 95% confidence
bands for determining goodness of fit when one
of the two distributions was judged to fit the data
and the other was not. The lognormal maximum
loglikelihood values were larger than their
Weibull counterparts when the lognormal distri-
bution was judged by the hypothesis tests to ad-
equately fit the data but the Weibull was not
(packages A, B, G, H, I, J; see Table 2). When
the hypothesis tests declared that the Weibull
distribution fit the data but the lognormal did
not, the Weibull maximum loglikelihood values

exceed their lognormal counterparts (packages
C, D, and E). Both the lognormal and Weibull
distribution were judged to adequately fit the
data from packages F and K by the hypothesis
tests. The Weibull maximum loglikelihood
value exceeded that for the lognormal for the
data from package F, while the lognormal maxi-
mum loglikelihood value was the larger of the
two for the data from package K. Note that the
SSE and maximum loglikelihood criteria are in
perfect disagreement for the data from packages
F and K.

CONCLUSIONS

Either the lognormal distribution or the Wei-
bull distribution or both fit each data set of this
study. For each data set, the fitted lognormal

FIG. 5. Weibull and lognormal probability plots with fitted distributions (upper and lower left) and with simultaneous
95% confidence bands (upper and lower right) for package F.
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provided a closer fit to the data at the smallest
fiber lengths. For five of the eleven data sets, the
fitted Weibull provided the closer fit at the larg-
est fiber lengths. With few exceptions, both fit-
ted distributions closely fit the data for all but
the shortest and longest fibers.

It may be concluded, then, that together, the
lognormal and Weibull distributions form a ro-
bust set of distributions for fitting wood fiber
length data sets. The distribution functions can
be used to aid the development of larger math-
ematical models for predicting composite prop-
erties based on properties of wood fibers and
manufacturing processes.
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