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ABSTRACT

This paper presents an application of Engineering Process Control (EPC) techniques, specifically, time
series control techniques, to reduce the variability in the drying rate of lumber in commercial dry kilns.
The main research objective of this paper is to evaluate the optimality of the drying schedules used in
industry by comparing with various feedback control strategies available in the statistical literature. The
analysis of the drying process is done by building a single-input-single-output (SISO) Box-Jenkins
transfer function model and deriving feedback control strategies based on such a model. The comparisons
of the simulations of the drying process, both using kiln schedule-control and the suggested feedback
control, show significant reduction in drying rate variability and drying time if the feedback control
methods are adopted.
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INTRODUCTION

In the conversion of logs to lumber, more time
and energy are incurred in drying than in any
other processing step (Simpson 1991). Some of
the various factors that affect the drying rate in
wood are wood species, relative humidity (RH),
dry bulb temperature (Tdb) of surroundings, lum-
ber thickness, air velocity and circulation, and
moisture content gradient. The optimum way for
drying any wood species should be the one that
dries wood in a minimum amount of time and
energy while keeping the number of drying de-
fects within the acceptable limits.

Conventional steam drying technology is the

most popular way for drying hardwoods in the
United States. Process improvements in wood
drying, such as faster drying rates without in-
creasing drying-induced defects, are of primary
importance to the hardwood processing industry.
The primary objective of kiln-drying hardwoods
is to provide hardwood lumber dried as quickly
as possible with a minimum of drying-induced
defects.

DYNAMIC MODELLING BASED ON

TIME-SERIES DATA

Many dynamic processes can be represented
in terms of the values of an input or controllable
factor and an output or measured quality char-
acteristic (Fig. 1). Dynamic modeling using the† Member of SWST.

Wood and Fiber Science, 37(3), 2005, pp. 472 – 483
© 2005 by the Society of Wood Science and Technology



time-series method offers an opportunity for im-
proving the kiln-drying process for hardwoods.

In dynamic modeling, the levels of the input
directly affect the output of the system or the
process. Usually, due to inertial elements in the
process, changes in the input will not immedi-
ately affect the output, but may influence the
output after some delay in time. Also, since the
model is dynamic, there may also be some in-
fluence of other factors in the process that are
not used as an input factor. Those unwanted in-
fluences are modeled as a disturbance or random
noise. Thus, in many industrial processes, the
output is driven by the input in the presence of
random noise.

This section reviews various methods that
may be used to represent the system behavior in
terms of a statistical model. The main purpose of
building these statistical models is to gain a bet-
ter understanding of the process and to use this
understanding to intelligently manipulate the in-
put factor for the control of the system. In terms
of a block diagram, any process with noise and
input can be represented as shown in Fig. 2.

The subscript t denotes the time of measure-
ment of any parameter. From now on, Yt is used
to denote quality characteristic or the measured

response, Xt denotes the input or controllable
factor, and errors are represented by �’s.

A transfer function (TF) model is used to de-
scribe the dynamic process relation between
controllable factors and quality characteristics.
There are many ways by which a transfer func-
tion model can be represented. One way is to
represent it as a linear combination of past val-
ues of the input factor. This is called the impulse
response transfer function and is given by:

Yt = ��0 + �1� + �2�2 + . . .�Xt = H���Xt (1)

where � � back shift operator, which can be
defined as �(Lt) � Lt−1 for any time series L.
The letter H is therefore a polynomial in �,
possibly of infinite order, and the �i are the
weights that measure the effect or influence of
past values of the control factor on the response
Y. This form of a TF model is useful for model
identification purposes. A detailed description of
back-shift operators and time series modeling
can be found in references del Castillo (2002)
and Box et al (1994). In the control engineering
literature, transfer functions are also represented
by Box-Jenkins transfer function models, which
have fewer parameters to estimate. The Box-
Jenkins transfer function with noise model in
general form is given as:

Yt =
Bs���

Ar���
�kXt +

C���

D���
�t (2)

where Bs(�) � b0 − b1� − b2�2 . . . − bs�
s is

called the numerator dynamics polynomial,

FIG. 1. Graphic representation of a dynamic process,
Adapted from del Castillo (2002).

FIG. 2. Graphic representation of the components of a transfer function with noise, Adapted from del Castillo (2002).
�t � White noise, Xt � Input (controllable factor), St � Signal or response of process in the absence of noise, Nt � Noise,
Yt � Output (Quality Characteristic) in the presence of noise, Yt � St + Nt .
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Ar(�) � 1 − a1� − a2�2 − a3�3 . . . − ar�
r is

called the denominator dynamics polynomial,
and k is the process lag or input-output delay.

This model is frequently called a (r, s, k) Box-
Jenkins transfer function model. The second
term of the model is the noise model. This form
of a TF model is useful for parameter estimation.

A third way of writing this model, useful in
deriving optimal feedback controllers, is in the
so-called ARMAX (AutoRegressive-Moving
Average eXogeneous variable) form:

A����Yt = B�����kXt + C�����t (3)

The sample cross-correlations between the in-
put and output reveal the relationship of interest
from which the weights vi in Eq. (1) may be
identified. The sample cross-correlations are
proportional to estimates of the impulse re-
sponse weights. Thus, the pattern in the sample
cross-correlation function is compared with im-
pulse response weights that indicate a tentative
transfer function model. More details about im-
pulse response weights and their use to identify
(r, s, k) in a Box-Jenkins model are in the ap-
pendix and in del Castillo (2002) and Box et al.
(1994).

FEEDBACK CONTROL OF A TRANSFER

FUNCTION MODEL

The main purpose of any control strategy is to
keep the output or quality characteristic as close
as possible to the target in a dynamic system in
the presence of noise. The transfer function is
used to develop the control algorithms to deter-

mine how the input factor should be adjusted in
a given time interval, so that the output is as near
the desired target as possible. These algorithms
or rules are also called controllers. A common
objective for these controllers is to minimize the
mean square error in the output. In the control
engineering literature, the feedback principle has
been defined as:

● If the response is lower than the target, in-
crease the controllable factor.

● If the response is higher than the target, de-
crease the controllable factor.

This type of feedback is also called the nega-
tive feedback principle as the input is adjusted in
the opposite direction of the measured output. A
block diagram for any process with feedback
control can be represented as shown in Fig. 3.

Minimum mean square error (MMSE) Con-
trol and Generalized Minimum Variance (GMV)
control strategies are two frequent objectives
that can be used to control a dynamic process
represented by transfer functions. MMSE con-
trol tries to achieve the minimum possible varia-
tion in the quality characteristic, without regard
for the variation in the changes in the control-
lable factor. (A GMV controller attempts to bal-
ance these two variabilities, see below). Let Yt

be the deviation from target. To obtain the
MMSE controller, we need to minimize the
equation:

MSE�Yt� = E�Yt
2� = Var�Yt� + �E�Yt��

2 (4)

The MMSE control law is obtained by minimiz-
ing (4) and is given by:

FIG. 3. Graphic representation of a process with feedback control, Adapted from del Castillo (2002).
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Xt =
−G���

B����F���
Yt. (5)

The coefficients of the G(�) and F(�) polyno-
mials are obtained by equating coefficients of
like powers of � in the so-called Diophantine
identity (del Castillo 2002):

C� = A�F + �kG (6)

where G(�) � g0 + g1� + . . . + gn−1�n−1 is of
order (n − 1), n � max(nA�, nB�, nC�), and F(�)
� 1 + f1� + . . . + fk−1�k−1 is of order (k − 1).

Because this method disregards the variation
in the input factor, this control strategy is un-
suitable for many practical applications. How-
ever, it is relatively easy to modify this equation
to achieve the controlled variation in the input
factors. While applying MMSE control, control-
lable factor adjustments may be very large and
variable, making it impractical to use, because
large variability in the input is not desirable in
many industrial applications. To obviate this dif-
ficulty, Clarke and Gawthrop’s GMV controller
(Clarke and Gawthrop 1975), which constrains
the variation in the controllable factor, can be
used. To obtain the GMV controller, instead of
minimizing (4), the following equation is mini-
mized, which tries to achieve a balance between
output and input variability:

J = E�Yt
2 + �Xt−k

2 � (7)

The GMV Control Law obtained by minimizing
(7) can be shown to equal:

Xt =
−G���

B����F��� + ��b0C����
Yt (8)

where � is a tuning constant, varied between 0
and 1 and chosen by user. As � increases, the
variance in X decreases and the variance in Y
increases. However, increase in variance in Y is
nominal as compared to decrease in variance of
X. When � is equal to zero, the GMV controller
is identical to the MMSE controller described by
(5). For more details about Box-Jenkins models
and control strategies please refer to the Appen-
dix, del Castillo (2002), and Box et al. (1994).

INDUSTRIAL DATA FOR

SINGLE-INPUT-SINGLE-OUTPUT (SISO) MODELING

Modeling a transfer function provides an un-
derstanding of the dynamical relationship be-
tween input factors and output quality character-
istic. This is the same as understanding the re-
lationships inside the “black box” of the process.
From the control point of view, the main goal is
to bring the process to a target by adjusting the
input factors. The main assumption is that the
input factor is in the control of the operator and
the process is bounded-input-bounded-output
(BIBO) stable.

Actual drying data were provided by a hard-
wood sawmill. The kiln operator used electric
resistance probes to monitor the moisture con-
tent across the kiln charge. The kiln schedule
used was modified from the conventional sched-
ule and was designed to dry “white” hard maple
(Acer saccharum).

White hard maple demands a premium paid
from kitchen cabinet and furniture manufactur-
ers. As such, drying rates are carefully moni-
tored and controlled in order to produce a white
rather than an off-white color in the hard maple
lumber.

The drying dataset was for the complete kiln
run from green (above 30% moisture content) to
the final desired moisture content (MC) of 8%.
Electronic resistance probes are more accurate
below 30% MC, and the first dry bulb change in
the kiln schedule is at 30% MC. Hence, the mod-
eling of the transfer function is focused on the
drying data below 30% MC. Using the drying
data provided, the time series data were col-
lected every 2 h, 45 min for a hard maple kiln
charge. The specific time interval used was due
to the data collection methodology of the com-
pany providing the data for this study. Any time
interval should work as well for this technique,
but the control engineer should be aware of the
drying response rate relative to set point changes
to determine the desired interval. A total of 95
observations were collected while drying maple
from average moisture content of 63% to 7.2%.
For modeling of the drying process, a target of
−4.5% decrease in moisture content per day
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(0.515% per time interval) was used. This drying
rate target for hard maple is the drying rate target
used by the sawmill providing the drying data, to
produce their premium white hard maple lum-
ber.

Figure 4 shows the moisture removal rate ver-
sus each time interval for the drying process
below MC of <30%.

For these data, the average moisture removal
rate (MRR) is 0.403% for every time interval.
As seen in the graph, in some of the time inter-
vals, instead of losing moisture, the average
readings from the sensors indicate a positive dif-
ference in moisture removal rate. Also, during
some of the time intervals, the drying process
appears to be too fast, indicated by average
moisture losses as much as 2.25% per interval.
However, when a linear trend line is fitted to the
graph, it shows that the drying rate decreases
towards the end of process. It is evident from the
graph that the drying process varies from the
target of 0.515% per time interval.

For the purpose of SISO modeling, we denote
the adjustment in kiln EMC as Xt and the mois-
ture content deviation from target as Yt. The
SAS system (PROC ARIMA) was utilized to fit
the models. Only partial SAS output is shown

here. The cross-correlation function between Xt

and Yt is shown in Fig. 5.
As shown in the graph, the first significant

cross-correlation is at lag�1. This indicates that
the input-output lag k is equal to one period.
Since the decay is not sinusoidal (del Castillo
2002; Box et al. (1994)), a tentative value of r �
1 is hypothesized. Also, since the decay starts at
lag 3, s is chosen to be 2 because there are two
weights at lag 1 and 2 that do not follow any
pattern. So, the initial transfer function was iden-
tified to be (r, s, k) � (1, 2, 1).

To identify the noise model, we need to look
at the sample autocorrelation function (SACF)
and the sample partial autocorrelation function
(SPACF) of the residuals of the preliminary
transfer function (TF) model shown in Fig. 6.

After fitting various noise models iteratively,
the tentative noise model that provided the best
overall model fit was identified to be (p, d,
q)�([4], 0, 2). The value in [ ] represents that
only the fourth power of autoregressive part was
significant enough to be included in the model.
Figure 7 shows the parameter estimates and
polynomials of the complete transfer function
model.

Thus, the fitted SISO model is

FIG. 4. Moisture removal rate vs time interval.
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Yt =
0.03113 + 0.16128�2

1 − 0.66029�
Xt−1

+
1 − 0.6096� + 0.456�2

1 − 0.3439�4 �t (9)

where Yt � deviations from target, Xt � change
in EMC and �t ∼ (0, 0.35442).

The key diagnostics are shown in Fig. 8 to
check the adequacy of the fitted model. The au-
tocorrelation plot of residuals shows no structure
and thus all the autocorrelation present in the
data is explained by the model. Also, the cross-
correlation check of residuals with the X’s
shows no evidence of model inadequacy. This
leads to the conclusion that the model is appro-
priate.

FEEDBACK CONTROL RULES

The design of the optimal feedback control-
lers for the single-input-single-output model was
shown in Eq. (9). For finding the optimal con-
troller, we need to transform the Box-Jenkins
model Eq. (9) into ARMAX form Eq. (3). Thus,

the A, B, and C polynomials of the ARMAX
form are given by the equations:

A��� = �1 − 0.66029���1 − 0.3439�4�

B��� = �0.03113 + 0.16129�2��1 − 0.3439�4�

C��� = �1 − 0.6096� + 0.456�2�
�1 − 0.66029��

In this case, we have k � 1, so F(�) is of the
order (k − 1) � 0 and G(�) is of order (n − 1)
where n � max(nA, nB, nC) � 5. The Diophan-
tine identity (6) for this case is:

�1 − 0.6096� + 0.456�2��1 − 0.66029��

= ��1 − 0.66029���1 − 0.3439�4��

+ ��g0 + g1� + g2�2 . . . + g5�5�
(10)

After simplifying and equating the same pow-
ers of � of (10), the G(�) polynomial was cal-
culated to be:

G��� = 0.61 + 0.86� − 0.3�2 + 0.344�3

− 0.23�4

FIG. 5. Cross-correlation between Xt and Yt.
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After putting the various polynomials in (8) and
solving the equation, we get the generalized
minimum variance controller:

Xt =
1

0.03113 + 32.12�
��−0.1613 − 27.78��Xt−2

+ 9.6�Xt−3 + 0.011Xt−4 + 0.056Xt−6

− 0.61Yt − 0.86Yt−1 + 0.3Yt−2 − 0.344Yt−3

+ 0.23Yt−4� (11)

Equation (11) shows the equation of con-
trolled Xt (change in EMC). After simplifying
(9), the equation of the Yt (deviation from tar-
get) is:

Yt = 0.66Yt−1 + 0.34Yt−4 − 0.23Yt−5 + 0.03Xt−1

+ 0.161Xt−3 − 0.011Xt−5 − 0.056Xt−7 + �t

− 1.27�t−1 + 0.86�t−2 − 0.3�t−3 (12)

A sample realization of the kiln-drying pro-
cess for white hard maple after simulation is
shown in Figs. 9 and 10. The value of � used for
the simulation was � � 0.5, as below 0.5 the
controllable factor diverges and gives infeasible
results. The first figure shows the change in
EMC (Xt) to be made after each observed value
of deviation from target (Yt) of −0.515% mois-
ture removal rate per interval.

As evident from Fig. 10, the initial variation
in Yt is very high, but towards the end of the

FIG. 6. SACF and PACF of the preliminary transfer function model.
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graph the variation decreases. The reason for
initial variation is that the first six values are the
startup values for the simulation of the process.
These startup values were directly taken from
the initial data set on which the transfer function
model was identified.

OPTIMAL-CONTROL OF DRYING PROCESS VS.
CONTROL BASED ON SCHEDULE

This section gives the comparison between
the feedback controlled drying process with the
drying based on a conventional kiln schedule for
hard maple (Simpson 1991). Since the SISO
model was built for 30%>Moisture Content
(MC)>15%, the simulations were also per-
formed for the same MC level for both con-

trolled and uncontrolled drying. The simulation
runs were made for 100 sample realizations of
schedule-control and the GMV controlled drying
process at five different levels of lambda (�).
The mean squared deviation (MSD) from target
was measured for each sample realization. After
the computation of average MSD, two sample
T-tests with unknown variances were done for
testing the significance of the difference be-
tween the two controller policies. The mean
squared deviation is the sum of variance of Yt

and square of the expected value of Yt.

MSD = Var�Yt� + E�Yt�
2 (13)

Table 1 gives the summary of results of the
simulation runs. It clearly shows that average

FIG. 7. Conditional least square estimates and polynomials of the transfer function model.
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mean squared deviation of Yt for the controlled
drying is significantly lower for the simulation
runs at different levels of lambda than for the
corresponding results from the schedule-based
controller. On average, MSD of controlled pro-
cess was 16.95% lower than that of schedule-
control.

The comparison of X’s is shown in Table 2 for
both the GMV controlled and schedule-based
control process. As can be noted in the table, the
average MSD for schedule-based control is the

same with standard deviation 0. The reason can
be accounted for by the fact that schedule-based
control calls for changes in X, which are fixed
and only dependent upon the moisture content
steps. It means that only four adjustments in
EMC were performed in every simulation.

If the difference is significant, as mentioned
above, it clearly leads to the conclusion that in
traditional kiln schedules, the drying is conser-
vative in nature and there is considerable room
for improvement in the overall drying process.

FIG. 8. Autocorrelation plot of residuals and cross-correlation of residuals with input X.
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Thus, the potential exists for traditional kiln-
drying to give way to more scientific control
strategies and optimized kiln control across pre-
specified targets.

SUMMARY AND CONCLUSIONS

Time series techniques and feedback control
strategies were adopted for the kiln-drying pro-
cess for hard maple. SISO Box-Jenkins transfer

function model for hard maple was found ad-
equate in representing the drying process. The
simulation of Generalized Minimum Variance
(GMV) controller based on SISO model was
compared against simulation of the traditional
dry kiln schedule of hard maple. In most of the
sample realizations of the drying process, GMV-
controlled drying performed better than the
schedule-controlled process. The variance of the
deviation from the given target of 0.515% per

FIG. 10. Yt vs. time interval.

FIG. 9. Xt vs. time interval.
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time interval for moisture removal rate (MRR)
was lower than that for the traditional schedules.
On an average, the mean squared deviation
(MSD) of MRR for GMV controlled process
was 16.95% lower than that of schedule-control
process for hard maple wood species.
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APPENDIX A. TRANSFER FUNCTION IDENTIFICATION

For modeling and identification, the goal is to
find the orders of denominator, numerator, and
input-output lag (r, s, k) respectively of transfer
function (TF) part and orders of autoregressive,
differencing, and moving average terms (p, d, q)
respectively of the noise part. The main assump-
tion while modeling TF functions is that there is
no feedback control present in the process. It

means that the input factor Xt is not controlled
based on the Yt values.

The procedure for transfer function model
identification outlined by Box et al. (1994) uses
the sample cross-correlations between the pre-
whitened series to tentatively identify model
form. Prewhitening is the procedure to make one
of the time series to be a white noise sequence.
If prewhitening is not done, then estimation of
cross-correlation between the time series will
not be good, because of the correlation present
in individual time series.

The cross-correlation can be defined as the
correlation between two series. The cross-
correlation function at lag k can be represented
mathematically as given below:

�xy�k� =
�xy�k�

�x�y
k = 0, �1, �2, . . . (14)

�xy(k) is the cross-covariance function at lag k
and is given by:

�xy�k� = E��Xt − �x��Yt+k − �y��
k = 0, 1, 2, . . . (15)

The sample cross-correlation function is esti-
mated from a sample realization of the stochastic
process on the assumption that it represents the
whole ensemble of realizations.

TABLE 1. Comparison of Y’s at different levels of lambda.

Lambda

GMV controller schedule Schedule based Two sample T-test

Avg MSD (Yt) Std error Avg MSD (Yt) Std error T-value Pr > |t|

0.5 0.29245354 0.0137683 0.37198821 0.01516125 −20.88 <.0001
0.6 0.32672135 0.01599047 0.40086997 0.0162271 −21.61 <.0001
0.7 0.34305120 0.01615727 0.41065141 0.0163078 −16.58 <.0001
0.8 0.32711607 0.01543687 0.39039329 0.01589821 −18.72 <.0001
0.9 0.35556094 0.01301336 0.40668078 0.01353963 −13.51 <.0001

TABLE 2. Comparison of X’s at different levels of lambda.

Lambda

GMV controller schedule Schedule based Two sample T-test

Avg MSD (Xt) Std error Avg MSD (Xt) Std error T-value Pr > |t|

0.5 10.577 8.8076 1.0714 0.0 10.79 <.0001
0.6 0.7915 0.6172 1.0714 0.0 −4.54 <.0001
0.7 0.0702 0.0627 1.0714 0.0 −159.62 <.0001
0.8 0.0143 0.011 1.0714 0.0 −959.71 <.0001
0.9 0.0034 0.0029 1.0714 0.0 −3697.8 <.0001
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rxy�k� =
Cxy�k�

SxSy
(16)

where Cxy(k) is the sample cross-covariance, Sx

and Sy are sample variances of series X and Y
respectively.

The sample cross-correlations between the
prewhitened input and output reveal the relation-
ship. The sample cross-correlations are equiva-
lent to estimates of the impulse response
weights. Thus, the pattern in the sample cross-
correlation function is compared with impulse
response weights that indicates a tentative trans-
fer function model.

After fitting the tentative TF model, ARIMA
noise model can be easily identified by looking
at SACF and SPACF of the residuals.

APPENDIX B. TRANSFER FUNCTION DIAGNOSTIC CHECKING

The fitted model adequacy is checked by
looking at the autocorrelation plot of residuals
(et � Yt − Ŷt) and cross-correlation of residuals
with the input factor X.

● If the model is correct, autocorrelation will be
absent in residuals and residuals will not be
cross-correlated with X.

● If transfer function part of the model is correct
but noise model is incorrect, then autocorre-
lation will be present, but there will be no
cross-correlation between residuals and X.

● If transfer function part is incorrect, then re-
siduals will be autocorrelated and also cross-
correlated with X.
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