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ABSTRACT 

Compression wood is a feature in softwoods that is undesired in sawn wood products due to its 
tendency to bend and crook as the moisture content changes. An automatic compression-wood detec- 
tion method was developed and tested on southern yellow pine lumber in the green condition. Sixteen 
lumber specimens were scanned using both a color camera and an X-ray scanner. Color information 
was shown to have significant and consistent differences between compression wood and clear wood. 
However, X-ray information was found to contain large density variations in green lumber due to 
inconsistent moisture content that would mask density variations arising from compression wood. 
Thercfore, it was concluded that X-ray information would not be useful in detecting compression 
wood in green southern yellow pine lumber. A multivariate regression model was developed based 
only on color information from one of the board samples. A nonlinear prediction model was produced 
by using the original color image data and expanded variables derived from the color images. The 
model based on one board sample was then applied on all boards. Classified images of the board 
surfaces were produced and compared to manually detected compression wood. An overall accuracy 
of 87% was observed in the classification of compression wood. 

Keywords: Compression wood, color scanning, X-ray scanning, nondestructive evaluation, machine 
vision, image processing. 

INTRODUCTION boards during the drying process. Sawn woold 

Compression wood is a special type of tra- containing excessive compression wood is un- 

cheid cells produced by the living softwood desirable because of the low value and the 
handling problems it may cause in the sawmill 

tree in those areas exposed to excessive com- process. To minimize waste production and 
pressive stress during growth-for example, unnecessary material handling of the woold 
the lower part of the stem in a leaning tree. products, compression wood should be detect- 
This of wood has a to shrink ed and rejected at an early stage of the pro- 
more in the longitudinal direction than normal duction, i.e., in the green condition. 
wood when dried, due to a larger microfibril  omp press ion wood is difficult to detect vi- 
angle (Time11 1986). This tendency is often the sually, especially on tangential and radiial 
cause bending and planks and wood surfaces. The most reliable way to de- 

t Member of SWST 
tect compression wood is with a microscope 
where the special properties of the compres- 
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sion wood cells, as round cross section, inter- 
cellular spaces, and helical cavities in lumen, 
can be observed (Timell 1986). On a macro- 
scopic level, destructive testing methods are 
available to measure the amount of light trans- 
mitted trough thin cross sections of wood 
since compression wood absorbs more light in 
the grain direction than normal earlywood and 
latewood. These methods can be performed 
manually with white light (Anon 1941 ; Timell 
1986) or automatically using a color vision 
system (Andersson and Walter 1995). Non- 
destructive methods to detect compression 
wood are rare; however, techniques have been 
employed to separate compression wood from 
normal wood in the dry state by measuring the 
spectral reflection using an imaging spectrom- 
eter (Nystrom and Hagman 1999). Since com- 
pression wood has a higher density than nor- 
mal wood, it should also be possible to detect 
using X-ray scanning. X-rays have been used 
for detecting various internal defects in wood 
(Bond et al. 1998; Grundberg 1994; Lindgren 
1992) based on density differences, and it has 
been shown that compression wood can be de- 
tected in dry spruce (Nystrom 1998). 

The overall goal of this investigation was to 
detect compression wood, both automatically 
and nondestructively, in green newly sawn 
boards of southern yellow pine (pinus sp.) 
(SYP). To address this goal, this study focuses 
on gaining a basic understanding of how com- 
pression wood appears in X-ray and color im- 
age data. The specific objectives of this study 
include: 

1. Assess the use of X-ray and color image 
data for the detection of compression wood 
in green SYP. 

2. Evaluate the accuracy of a multivariate re- 
gression model for automatically detecting 
the occurrence of compression wood from 
green SYP image data. 

MATERIALS AND METHODS 

Materials 

Sixteen SYP lumber specimens used for this 
investigation were collected at a sawmill in 

southern Virginia, USA. The lumber speci- 
mens all were 32 rnm (1% in.) thick and 150 
mrn (6 in.) wide. The length of the lumber 
varied from 1.6 to 2.4 m (5 to 8 ft). The boards 
used in this investigation were selected to con- 
tain compression wood of varying degrees at 
some part of the surface. All boards were 
scanned approximately 3 h after sawing. To 
minimize surface drying, the lumber was 
closely packed together and covered with plas- 
tic during this 3-h period. 

Scanning methods 

The boards were scanned using Virginia 
Tech's lumber scanning system (Fig. 1) (Con- 
ners et al. 1997). Scanning generated com- 
bined X-ray and color images with a cross- 
board resolution of 1.2 pixeVmm (30 pixellin.) 
and a downboard resolution of 0.63 pixeVrnrn 
(16 pixeVin.). The X-ray and color systems 
were calibrated to have identical spatial reso- 
lution so that a pixel location on either image 
could be referenced to the same location on a 
lumber specimen. 

X-ray scanning.-Scanning with X-rays 
gives an averaged image of the wood density 
throughout the lumber thickness, not only on 
the surface. This average wood density can be 
useful for detection of compression wood 
since it has a higher density than normal 
wood. The X-ray system employed an EG&G 
Astrophysics X-ray source with the radiation 
energy set to 100 keV and 0.6 mA. The X-ray 
sensor was a 256-pixel line array manufac- 
tured by FISCAN. The images were shade- 
corrected using a linear function, and the con- 
trast was optimized by calibrating the mini- 
mum level (highest absorption) with a target 
of 45-mm-thick polyethylene. 

It was evident after scanning the boards that 
compression wood was difficult to detect in 
green lumber with X-rays. It was found that 
density changes associated with moisture var- 
iations in the wood masked the smaller density 
changes associated with compression wood 
(Fig. 2). The darker regions in the green lum- 
ber X-ray image in Fig. 2a are more dense due 
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FIG. I .  Setup of thc X-ray and color scanner system. 

to higher moisture retained in the sapwood of 
SYF? After the lumber is dried, higher densi- 
ties associated with moisture are removed 
(Fig. 2b) and compression wood can be read- 
ily observed through contrast enhanced im- 
ages (Fig. 2c). 

Color scanning.-It was observed that 
compression wood on the surface of the newly 

sawn SYP lumber appeared as a "reddish" 
color. This color appearance, if significaint, 
could be utilized for the automatic detection 
of compression wood using a color camera. 
Color images were collected using a Pulnix 
TL-2600 RGB line scan camera with a reso- 
lution of 864 pixels. The camera was mounted 
perpendicular to the wood surface, and four 

FIG. 2. X-ray images of Board 13 in green (a) and dry condition (b). Image (c) is a contrast-enhanced version of 
(b) with manually observed compression wood areas denoted between the dashed lines and board edges. 
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linear Fostec fiber-optic light lines were used 
to illuminate the surface of the lumber. These 
light lines were arranged pairwise in a small 
angle from the optical axis of the camera il- 
luminating a line across the boards perpendic- 
ular to the feeding direction (see Fig. 1). The 
Pulnix camera has three sensor arrays filtered 
with red, green, and blue interference filters, 
respectively. This camera configuration gives 
a slight spatial offset of the three color images, 
but no undesired effects were observed for this 
experiment. The camera was fitted with two 
color-balancing filters (Schott filter numbers 
FG-6 and BG-34), and the three color chan- 
nels were individually shade corrected with a 
linear function. 

Multivariate modeling 

As indicated earlier, the moisture content 
present in green SYP lumber presented prob- 
lems for accurate compression wood detection 
using X-ray images. For color images, how- 
ever, visual appraisal of compression wood 
noted distinct color differences from normal 
earlywood and latewood in the green condi- 
tion. It was hypothesized that these color dif- 
ferences could be automatically detected and 
classified. Therefore, a classification model 
was developed using only color image data. 
This model was made using the MIPLS al- 
gorithm (Multivariate Image Projections to 
Latent Structures) (Hagman 1996) and was 
implemented using the public domain NIH 
Image software available from the National 
Institutes of Health (NIH 1999). 

Partial Least Squares Regression Projec- 
tions to Latent Structures (PLS) is a method 
of iteratively fitting bilinear models in several 
blocks of variables and can make linear re- 
gression models for many classes simulta- 
neously. MIPLS uses the kernel algorithm for 
PLS (Lindgren et al. 1992), which allows 
many objects (such as pixels in an image) to 
be modeled as several classes in a fast and 
memory-saving way. The result of MIPLS can 
be displayed as prediction images after apply- 

ing weight and offset coefficients on the orig- 
inal image data. 

To separate compression wood from normal 
wood and all other features that normally oc- 
cur in wood, a number of classes were com- 
posed. Simply dividing the features into two 
classes such as compression wood and non- 
compression wood did not work because of 
the large color variations of the features in- 
cluded in the non-compression wood class. 
Therefore, four subclasses were introduced for 
non-compression wood: latewood, earlywood, 
background, and knot. These subclasses were 
modeled as separate classes but were all con- 
sidered as non-compression wood in the eval- 
uation. Other common features in SYP such 
as pith, bark, and resin could also be intro- 
duced as subclasses in the model. However, 
modeling other non-compression wood fea- 
tures was not warranted in this study because 
occurrences of these features in the training set 
were minimal. 

Compression wood could not easily be sep- 
arated from the other classes using separate 
color channels or simple linear combinations 
of various color channels. Therefore, it was 
concluded that nonlinear effects needed to be 
incorporated in the model. Nonlinear effects 
were modeled by introducing nonlinear trans- 
formations of the original image data (Hag- 
man 1996) to allow for better separation of the 
feature classes. In this case the original R, G,  
and B (red, green, and blue) images were ex- 
panded to six additional nonlinear variables: 
R2, G2, B2, R X G, R X B, and G X B. Trans- 
formation from the RGB color space to some 
other color representation scheme like HSI 
(Hue, Saturation, Intensity) has not been 
shown to significantly improve classification 
of wood features (Brunner et al. 1993; Hag- 
man 1996). Furthermore, a color space trans- 
formation would also be time-consuming and 
thus undesired for an industrial implementa- 
tion. 

The MIPLS algorithm resulted in linear 
weight coefficients for each variable, and the 
prediction model for all classes can be written 
as : 
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where P denotes the prediction image vector 
for the different classes (cw = compression 
wood, Iw = latewood, ew = earlywood, bg = 
background, and kn = knot). The RGB input 
image vector is denoted as R, G, B for the 
original red, green, and blue images, respec- 
tively, R2, 6 2 ,  B2 are the square of each po- 
sition (pixel) in the R, G, and B images, re- 
spectively (for example, r2, = (rij)2, etc.), and 
RG, GB, RB are pixelwise cross multiplica- 
tion between two of the original R, G, and B 
images (for example, rg, = ri;gij, etc.). The 
matrix of weight coefficients, w, and offsets, 
o, describe the linear combination of the RGB 
input image vector that will give the prediction 
image vector, P. 

The model was "trained" (e.g. the matrix 
of weight coefficients and offsets were esti- 
mated) on a part of Board 13 with the size 
150 X 850 rnm2, using 85,365 pixels. This part 
of Board 13 was chosen as the training set 
because of its composition of all the features 
to be modeled in a relatively small surface. 
Five classes were trained: compression wood, 
latewood, earlywood, background, and knots. 
The weight coefficients and offsets estimated 
by the MIPLS algorithm in the training pro- 
cedure are shown in Table 1. 

Using the model produced from the small 
training set, an implementation of the model 
was then made by applying the estimated 

weight coefficients on the rest of the 16 boards 
scanned. For each board, this implementation 
resulted in prediction images for each of the 
five classes. The prediction images show the 
probability for class possession as grayscale 
value in each pixel (Fig. 3). These prediction 
images were then mutually compared using a 
simple Bayesian classifier (Duda and Hart 
1973) and assigning each pixel to the class 
whose prediction image has the highest value 
in that point. The result can be displayed as 
classified images (Fig. 4) where the norm(a1 
wood features (earlywood, latewood, and 
knots) are combined in a single non-compres- 
sion wood class. 

Evaluation of the classiJication method 

The classified images were evaluated by 
comparing them with the real boards and judg- 
ing if the areas classified as compression wood 
were correct. The compression wood areas 
were manually detected by looking for dull- 
ness, lifelessness, and lack of luster (Panshin 
and de Zeeuw 1980; Time11 1986) in the dark- 
er parts of the annual ring (what appears to be 
latewood). If the width of the darker part of 
the annual ring exceeds one third of the whole 
annual ring, it was judged as compression 
wood. Note that only the presence or absence 
of compression wood was considered in the 
evaluation. The performance of the model to 
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detect other features was not evaluated; they 
were only included in the model to better ex- 
plain the large variability of wood. 

The surfaces of all boards were evaluated, 
and every pixel was judged to be either correctly 
classified normal wood, correctly classified 
compression wood, false positive classification 
or false negative classification (Table 2). False 
positive classification is normal wood area rnis- 
classified as compression wood. False negative 
classification is compression wood area misclas- 
sified as normal wood. The four other classes 
(latewood, earlywood, background, and knots) 
were all considered as non-compression wood 
or "normal wood7' areas in this evaluation. 

RESULTS AND DISCUSSION 

In this study, X-ray scanning was found an 
inappropriate method to detect compression 
wood in green SYP: The water in the wood was 
found to highly dominate the density of the 
green boards and thus hide the smaller density 
differences caused by the compression wood. 
The distribution of the moisture in the wood was 
very irregular (Fig. 2). X-rays are attenuated in 
different materials depending on their chemical 
composition and mass. The difference in X-ray 
mass attenuation between wood and water is 
very small at the energy used (Lindgren 1992), 
which means that the density effects of wood 
and water can not be easily separated in an X- 
ray image. Hence, single energy X-ray scanning 
such as the one used in this scanning system 
cannot be used to classify compression wood in 
green SYP lumber. 

Compensation of X-ray images to remove 
moisture effects was not possible since the 
moisture in green SYP is far from uniformly 
distributed (see Fig. 2). Furthermore, density 
variations attributed to moisture content and 
compression wood are difficult to separate. 
Compression wood has a higher density than 
normal wood in dry condition due to its thick- 
er cell walls. This higher density means that 
the tracheid lumen is smaller (the wood is less 
porous) and can not fill with the same amount 
of water as normal wood can above the fiber 
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FIG. 3. Prediction images ( a x )  ant1 a classified image (f) of the training set, a portion of Board 13. The prediction 
images show the probability for class possession, dark = high probability, light = low probability. Letters denote: a 
= compression wood, b = latewood, c = earlywood, d = background, e = knots. The classified image shows nonnal 
wood features (earlywood, latewood, and knots) as white, compression wood as black, and background as gray. 

saturation point, i.e., green compression wood 
can be drier than normal green wood. There- 
fore, density differences in compression wood 
are further masked and even harder to detect 
with X-rays in the green condition. 

Color scanning with an RGB camera 
worked well for detecting compression wood 
in the green state. The compression wood has 
a predominant reddish color in the green state 
that made it easier to detect than after drying. 
A possible explanation is that the free water 
in the lumber helps the light to penetrate deep- 
er in the wood surface and thus get more in- 
fluence from the light-absorbing characteris- 
tics of the wood, i.e. the color contrast is 
stronger in wet wood. 

The multivariate model for detecting com- 
pression wood was made with MIPLS, using 
only the color images from a part of Board 13 
as input data. The original R, G, and B vari- 
ables were expanded to R2, G2, B2, R X G, R 
X B, and G X B, which made the model non- 
linear. Five different classes were used in the 
model: compression wood, latewood, early- 
wood, background, and knots. Weight coeffi- 
cients produced by MIPLS for all classes and 
variables are shown in Table 1 .  

The model was made using only a part of 

one board as the training set. This small train- 

ing set can result in overfitting. Such overft- 
ting can limit the model's applicability for a 
larger batch of boards, which can have vari- 
ability that has not been described by the train- 
ing set. Better classification models can be 
made by carefully understanding the color var- 
iability in SYP lumber and then selecting rep- 
resentative training sets. In this investigation, 
there were only five classes of wood features 
modeled. Other common features in SYP were 
not included because they were not present to 
a sufficient extent in the 16 lumber specimens 
studied. If other features such as pith, resin, 
and surface stains are prevalent in lumber, then 
their subclassification and inclusion in the 
training set may be required for improved 
classification performance. 

An evaluation of the performance of the 
model was made by comparing the classified 
images to a manual judgment of the sarne 
boards. Only the compression wood was con- 
sidered in this evaluation, and all other classes 
were thought of as non-compression wood. 
The average correct compression wood clas- 
sification was found 89%. Further, 14 of the 
16 boards (87.5%) evaluated had more th(an 
85% correct classification of the board surface, 
which can be regarded as satisfactory. The se- 

sult for all boards is shown in Table 2. 
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board 8 board 12 board 13 

FIG. 4. Grayscale images (left) compared to classified images (right) for Boards 8, 12, and 13, respectively. Note 
that Board 12 has a different appearance from the other two, which might explain the lower classification accuracy for 
that board. 

In this study, there was no possibility to can cause small errors in the evaluation result, 
manually classify compression wood with the but the method should still give a good indi- 
same resolution as the scanning system, and a cation of the trends in the performance of the 
manual classification is always subjective. system. 
This mismatch of resolution and subjectivity As mentioned earlier, 14 of the boards were 
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TABLE 2. Evaluation results. Calculated values are in percent of board area. 

Manually 
Cl;~ssified False posit~ve False negatlve estimated Correct 

Board Board area compression compression compression compression classified 
number (pixel) wood wood wood wood board area 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
Total 

classified as acceptable. It was observed that 
most of the false positive detection errors 
found in these 14 boards were located in areas 
surrounding knots. Some of the darker-colored 
latewood areas were also misclassified as com- 
pression wood. These areas tend to have sim- 
ilar color characteristics as compression wood 
for the samples tested. The two other boards 
with bad classification results (Boards 9 and 
12, Table 2) were notably different from the 
others by having many knots and more resin- 
ous wood. Figure 4 shows grayscale and clas- 
sified images of Board 12 in comparison to 
Boards 8 and 13, where some differences in 
appearance can be observed. Board 8 is sim- 
ilar in nature to the training sample (Board 13) 
and has good classification accuracy (90%), 
while Board 12 is notably different (e.g., large 
frequency of knots and a generally darker ap- 
pearance) and has a lower accuracy (62%). 
This notable difference indicates that the per- 
formance of the system can be improved by 
carefully selecting the appropriate training set 
when estimating MIPLS coefficients. 

The classification technique described here 
can easily be implemented in a scanning sys- 
tem using RGB color cameras, and even in 
existing systems, by further processing of the 

color images according to the resulting model. 
Considering the simplicity of the model, it can 
be processed pixelwise in real time while the 
image is collected, preferably done by a hard- 
ware implementation to speed up the proce,ss- 
ing. However, the model presented here is val- 
id for only the system on which it was trained. 
Any new implementation of the technique 
must always be calibrated and trained for the 
specific system using the procedures described 
earlier. 

It is important to note that the classification 
results found in this study are preliminary 
based on a small sample of SYP lumber. These 
preliminary results show that certain collor 
characteristics in green lumber correlate 
strongly with regions of compression wood. 
However, before a practical industrial scan- 
ning system can be developed, further work is 
needed to quantify how color characteristi~cs 
found in compression wood overlap with all 
other noncompression wood features. This 
work would be necessary for designing an olp- 
timum training sample and for determining 
whether other scanning and image processing 
techniques would be necessary for an indus- 
trially robust detection system. In working to- 
wards such a system, this study has provid'ed 
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a first step in understanding how SYP com- 
pression wood appears in X-ray and color im- 
ages. 

CONCLUSIONS 

Significant findings gained from this study 
include: 

1. Density differences in compression wood 
are masked by density variations associated 
with moisture content making it difficult to 
detect in the green condition with single- 
energy X-ray imaging systems. 

2. Compression wood has a predominant red- 
dish color in the green condition indicating 
that RGB color images can be useful in 
nondestructive detection of compression 
wood. Incorporating color information into 
a multivariate regression model resulted in 
an overall compression wood classification 
accuracy of over 87%. 

3. Compression wood could not easily be sep- 
arated from non-compression wood using 
separate RGB color channels or linear com- 
binations of these channels. Nonlinear 
combination of these color channels were 
necessary for more complete and accurate 
separation. 

4. Compression wood could not be simply 
separated using only 2 classes: compres- 
sion wood and non-compression wood. 
Non-compression wood had to be further 
subclassified as latewood, earlywood, 
knots, and background to more accurately 
model separations in color variability found 
in the tested images. 

5. False compression-wood detection errors 
arose predominantly in areas surrounding 
knots and darker colored latewood areas. 
These areas tend to have similar color char- 
acteristics as compression wood for the 
samples tested. 
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