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ABSTRACT 

The theory of absolute rates of chemical processes is presented as an appropriate conceptual frame- 
work for understanding the creep-rupture phenomena of duration of load (DOL) and rate of loading 
(ROL). The theory predicts the following experimentally observed phenomena: 

(1) The logarithm of the time to failure under constant deadload stress increases linearly as the 
stress level is decreased. 

(2) The rupture strength in a linear-ramp ROL experiment increases with the logarithm of the rate 
of stressing. 

Moreover, the equations derived to describe these phenomena contain the same parameters. These 
parameters are defined physical quantities that describe the creep characteristics of the material. It is 
possible to predict how long a material will support a constant deadload stress (DOL behavior) from 
measurements of apparent rupture strength as a function of the rate of stressing in a linear-ramp 
loading experiment (ROL behavior). 

Rupture of Douglas-fir in bending is selected as an example, and the experimental results from 
ROL-behavior experiments are used to predict DOL behavior. The theory adequately describes the 
experimentally observed results. 

Keywords: Creep rupture, duration of load, rate of loading, bending rupture, Douglas-fir, absolute 
reaction rates, stress-strain behavior, tensile strength, modulus of rupture. 

INTRODUCTION 

Wood (Gerhards 1977), paper (Rance 1953), and textile fibers (Hearle and 
Morton 1962) all exhibit time-dependent rupture behavior. Any ofthese materials, 
loaded to a constant stress level considerably below its normal breaking stress, 
will nevertheless break-if that stress is maintained over a long enough time. This 
phenomenon has been called the duration-of-load (DOL) phenomenon. Research- 
ers have empirically found that, for these materials under constant deadload stress, 
the logarithm of the time to failure varies inversely as the stress level. A second 
time-dependent rupture phenomenon exhibited by wood (Gerhards 1977), paper 
(Rance 1953), and textile fibers (Hearle and Morton 1962) can be called the rate- 
of-loading (ROL) phenomenon. The measured strength of the material increases 
as the rate at which the material is stressed increases. If the applied stress is 
increased linearly with time (linear ramp loading), the rupture strength increases 
with the logarithm of the rate of stressing. 

The purpose of this paper is to demonstrate that the theory of absolute rates 
of chemical processes provides an appropriate conceptual framework for under- 
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standing these creep-rupture phenomena. This theory predicts the experimentally 
observed behavior for both phenomena. It also provides the mathematical for- 
malism connecting DOL and ROL behavior. Using this connection, one can 
predict how long a material will support a constant deadload stress (DOL behavior) 
from measurements of strength as a function of rate of stressing in a linear-ramp 
loading experiment (ROL behavior). 

The bending of Douglas-fir is selected as an example, and the experimental 
results from ROL-behavior experiments alone are used to predict DOL behavior. 

THEORETICAL BACKGROUND 

A serious mathematical difficulty arises in the interpretation of the stress-strain 
behavior of a material at the point on the stress-strain curve that corresponds to 
failure or rupture. Up to that point, one can follow continuously the changes that 
take place as a result of elastic or viscoelastic response. Rupture, however, rep- 
resents a discontinuity that cannot be avoided. No continuous set of variables 
describes both the state before and the state after rupture. One cannot even use 
thermodynamics (at least not reversible thermodynamics) to describe the rupture 
process because of the discontinuity and the need to define both starting and final 
states in consistent terms. Thus one can never describe a breaking process with 
the same degree of mathematical rigor that one can describe either an elastic 
deformation or a viscous flow. This mathematical difficulty seriously interferes 
with a fundamental understanding of rupture phenomena. 

THE CHEMICAL KINETICS APPROACH 

The chemical kinetics approach is one way of dealing with this mathematical 
difficulty. The kinetics approach makes the assumption that rupture is determined 
completely by the magnitude and nature of the deformation preceding rupture 
and that the elucidation of the role of creep in processes leading to failure is the 
essential problem. 

The guiding principle behind the chemical kinetics approach to an understand- 
ing of rupture is the idea that the straining process itself is, or contains within it, 
a process of failure that becomes unstable at a time (pre)determined by the strain- 
ing process, thus ending in rupture. 

In order to examine the role of creep in fundamental terms, it is helpful to 
follow the methods used by Eyring and his coworkers (Glasstone et al. 1941; 
Tobolsky et al. 1943). They extended the theory of absolute rates of chemical 
reactions to describe the phenomena of viscosity and viscoelasticity. 

According to the kinetic theory of matter, all atoms and molecules are in motion. 
This molecular motion, when analyzed in terms of statistical mechanics, provides 
a description of the macroscopic motion. In a solid, for example, the motion of 
its component molecules is more restricted than in a liquid; and in a liquid, more 
restricted than in a gas. In a solid, each atom or molecule or group of molecules 
can be pictured as sitting at the bottom of a potential energy well (Fig. 1). At 
equilibrium, a molecule in its well appears quite satisfied where it is. But that 
does not mean that it does not move from that site. Because it is in constant 
motion, it can occasionally surmount the energy barrier and get to a new position 
of minimum energy. In a solid this jumping of an energy barrier is less frequent 
than in a liquid, and on the average there are just as many jumps to the left 
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FIG. 1. For a material with no external stress, the potential energy barrier is symmetrical, and the 
tendency of the force center to jump the barrier is the same from either direction. The number of 

jumps right per unit time equals - exp - and the net number of jumps per unit time equals 0. 
" h (3 

A = Cross section of the force center. AF = Height of the energy barrier. X = Distxlce between jumps. 

direction as there are to the right, so that there is no net movement of the solid 
or parts of the solid. 

The kinetic theory of absolute rates tells us that the number of jumps per unit 
time in, say, the right direction, v,, is given by 

A F  is the energy of activation needed for jumping, or the height of the potential 
energy barrier. Boltzmann's constant is given by k, Planck's constant by h, the 
absolute temperature by T, and the gas constant by R. 

The number of jumps per unit time in the opposite direction 

is identical, so that, on the average, there are just as many jumps to the left as 
there are to the right: so that no net motion occurs. 

The situation changes when, superimposed upon this symmetrical energy bar- 
rier, we apply an external mechanical stress, f, on the material. The tendency of 
the molecules to jump the barrier in one direction is different from the tendency 
to jump the barrier in the reverse direction. 

Let us try to generalize by not necessarily calling the jumping objects molecules, 
because elements larger than molecules migh: be involved in the motion. They 
might be groups of molecules, filaments, fibrils, etc. Let us just call them elements 
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FIG. 2. For a material under external stress, the potential energy banier is distorted, and the 
tendency to jump the barrier in the direction of the applied stress is greater than in the opposite 
direction. The net number of jumps per unit time equals 

A = Cross section of the force center. AF = Height of the energy barrier. X = Distance between jumps. 
f is the applied stress. 

or force centers. The easiest case to envision is a tensile stress. Although a tensile 
stress is used for simplicity, the treatment is equally applicable to any generalized 
stress that has the unit's force per unit area and its appropriate response. 

The additional force that the molecule or force center feels is the stress on the 
force center multiplied by A, the cross-sectional area of the force center. And if 
the distance between minimum potential energy troughs in the direction of the 
stress is given by A, then the applied stress contributes an amount of mechanical 
work towards surmounting the energy barrier equal to 

This is equivalent to a symmetric distortion of the potential energy barrier to give 
it a form like that shown in Fig. 2. For this unsymmetric energy barrier the number 
of jumps per unit time in the right direction is given by 

The number of jumps per unit time in the reverse direction is given by 
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The overall net tendency to jump the energy barrier is the number of jumps per 
unit time in one direction minus the number ofjumps per unit time in the opposite 
direction; 

V+ - v = - kT h exp ( ~ " , ' ) [ e x p ( ~ ) - e x p ( ~ ) ]  - 

Because the quantities A and X always appear as a product, let's call that product 
6. 6 has the units of (m3) and represents the volume of the force center or moving 
element. 

Then 

ex - e-x 

sinh X = - 
2 

The net number of jumps per unit time multiplied by the distance per jump, 
A, gives a rate of dislocation of the element. And if we call that rate of local strain 

d r  dislocation, -, then 
dt 

We will assign the function y the boundary condition that y = 0 when t = 0. 
In this equation y represents the microscopic strain (in actual displacement) so 

dy . that - is the rate of dislocation or rate of creep deformation. 
dt 

Equation (1) is equivalent to one that is sometimes called the hyperbolic sine 
law of viscous flow. If fi a 2kT, then the hyperbolic sine is equal to its argument, 
and the rate of strain is proportional to f, the stress. This is just a description of 
a Newtonian liquid, where the rate of strain is proportional to stress. Now it is 
reasonable that we should have an equation that applies to liquids as well as solids 
because we have not done anything yet to limit our discussion to solids. If we 
limit our discussion to solids, then we will limit ourselves to only those cases for 
which fi >> 2kT. kT is the measure of thermal energy in the system; fs, a measure 
of the mechanical work involved. So we will be dealing with those cases for which 
the mechanical work involved to obtain movement or dislocation is large com- 
pared to the thermal energy of the material. Roughly, this corresponds to a system 
where large forces are required before movements occur, rather than, for example, 
in liquids. In ordinary liquids f is of the order of 0.1 Pa, while the molecular 
volume, 6, is of the order of 1 x lop2' m3, i.e., fi a 2kT. 

Equation (1) is equivalent in form to an equation used in the damage accu- 
mulation model (Gerhards and Link 1983) explanation of time-dependent rupture 
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phenomena. This equivalence is apparent if the variable of integration, y, is 
Y replaced by its reduced variable, -, the ratio of creep deformation to critical 
Ye 

creep deformation. The limits of integration in this form are 0 and 1, where unity 
corresponds to the level of "damage" that causes failure. Unlike the damage 
accumulation theory, however, all of the parameters used in Eq. (1) have defined 
physical interpretations. If indeed three characteristics of the material are known- 
1) the volume of the moving element, 6, 2) the height of the potential energy 

barrier, AF,  and 3) the ratio, (the localized strain)-then Eq. (1) contains no 
A 

adjustable parameters. 
In order to integrate Eq. (I), we make use of the critical assumption of the theory. 

This assumption is the creep-rupture hypothesis: there is an upper limit that the 
localized strain deformation can reach, y,, above which the material can no longer 
support the stress and the material fails or ruptures. This idea that there is a 
critical strain that determines rupture has a long history. Probably the first to 
suggest it was St. Venant (ca. 1855). But the first to suggest this creep-rupture 
hypothesis in terms of the limits of integration was Coleman (1956), and it is 
Coleman's formalism and treatment that is followed here with some modifications 
for our special purposes. 

We may integrate Eq. (1) only if we know the functional dependence of the 
stress on time, f(t). We will consider only two cases in detail. For DOL behavior, 
we are concerned with the creep deformation that occurs under a stress that is 
invariant with time, f = constant. For ROL behavior, we are interested in the 
integration for the case where the stress increases linearly with time, f = at; a so- 
called linear ramp, where a is the rate of stressing. 

PREDICTION O F  DOL BEHAVIOR 

If the stress is constant over time, that is, at time t = 0 a constant stress is 
applied, the material will creep until a localized strain deformation is reached, 
y,; at which point in time, t,, the specimen fails. 

a 
then t, = - csch fb 

2 

1 2 
csch x = - = --- 

sinh x ex - e-" 
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FIG. 3. In a linear-ramp rate-of-loading (ROL) test the applied stress (f) increases linearly with 
time (t) up to failure (*). 

Equation (2) is the well-verified relationship between stress, f, and the logarithm 
of the time required to break. This equation is most often seen by wood engineers 
as an empirical relationship between stress (normalized, and expressed as a per- 
cent) and the common log t. 

This, then, is the first of two important predictions of the chemical kinetics 
approach, that for a material under constant deadload stress, the logarithm of the 
time to failure varies inversely as the stress level. 

1 
f - l n -  

tt3 

PREDICTION OF ROL BEHAVIOR 

The result of the integration of Eq. (1) changes if instead of a constant deadload 
stress we consider a stress that varies with time. The simplest type of time- 
dependent stress to consider is a linear ramp; one for which the stress is increased 
linearly with time, at a rate of stress application, a (Fig. 3). 

f = a t  

In this case the sample fails at a time, t*, corresponding to a stress, P. 
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2kTh 
abt* - cosh 0)  I 

but at* = fr  
and if bfr B 1 

ebr 
cosh 0 << cosh bf* = - 

2 

exp(bf*) = aab 

Equation (3) is the second important prediction of the kinetic approach amply 
verified experimentally. That prediction is that the breaking stress (in a linear- 
ramp ROL experiment) increases as the logarithm of the rate of loading. 

SIGNIFICANCE O F  THE DERIVED EQUATIONS 

We have two equations, Eqs. (2) and (3), that predict 1) the dependence of 
breaking time on stress in a constant deadload experiment and 2) the dependence 
of breaking stress on the rate of loading in a linear-ramp ROL experiment. 

The only parameters in Eqs. (2) and (3) are the quantities a and b. These 
quantities are, in turn, relatable to material properties. For example, since b = 6 /  
2kT, it provides an immediate estimate of the volume of the moving element, 6. 
On the other hand, because 

the value of a can provide a measure of the height of the potential energy barrier, 
AF,  only if the ratio .,/A, can be estimated from the additional measurement of 
the critical strain, i.e., the strain at failure. 

If the theory is valid, when one plots f versus In tn or plots fr versus In a ,  
straight lines result. Moreover, the slope of the line given by Eq. (2) is negative 
that given by Eq. (3). 

We see that f and f* and tB and a are all experimental quantities. The only other 
quantities in these equations are a and b, so that if one could evaluate the quantities 
























