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ABSTRACT

The radial moisture diffusion coefficient in Fick’s law for a sample of Norway spruce (Picea abies)
under isothermal drying conditions was determined in a parameterization of Arrhenius’ equation type.
Using X-ray CT-scanning, the wood density and moisture content distributions were obtained in the radial
direction for the wood sample. An optimization scheme, based on finite element computation, was then
applied to find the parameter values such that the difference between observed and computed moisture
content was minimized. The combined numerical and experimental technique was developed to reduce
known disadvantages of similar approaches, and a specific algorithm to determine diffusion coefficients
was presented. A comparison of the calibrated diffusion coefficient with those given in the literature
showed a good fit. The computed moisture content based on the obtained diffusion coefficient and the
observed moisture content agreed well. Finally, the effect of measurement errors on the computed material
parameter was found to be small.

Keywords: Calibration, CT-scanning, diffusion coefficient, parameter identification, wood drying.

INTRODUCTION

A diversity of models based on either diffu-
sion, empiricism, or phase separation mecha-
nisms has been developed for analyzing drying
of timber. Keey et al. (2000) provide an over-
view. When studying drying that occurs under
isothermal conditions below the fiber saturation
point, unsteady-state diffusion models have fre-
quently been applied. For such a simplified ap-
proach to work well, the need for good material
data is vital. Different experimental techniques,
such as the cup or the sorption method combined

with analytical or numerical solutions, have
been applied to resolve the material properties.
In the determination procedure, there exist nu-
merous difficulties, such as non-Fickian behav-
ior, e.g. apparently sample-length dependency of
the diffusion coefficients and material param-
eters that display a significant dependence upon
the magnitude of step change in relative humid-
ity (Wadsö 1993). Other difficulties are the in-
fluence of surface resistance, the effect of sorp-
tion hysteresis, the moisture dependency of the
diffusion coefficients, and the restrictions of us-
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ing analytical solutions in the determination pro-
cess.

To overcome some of the shortcomings con-
nected with traditional techniques, Olek and
Weres (2001) point out that a so-called inverse
method appears to be a valuable tool for deter-
mining the coefficients. In particular, the method
does not put restraints on the boundary condi-
tions or initial moisture distribution in the
sample. In fact, Koc et al. (2003) use an inverse
method to study surface resistance. Inverse iden-
tification in terms of a numerical technique for
an underlying equation of state in conjunction
with the minimization of an objective function
has been successfully applied by Chen at al.
(1996) and Simpson and Liu (1997) to evaluate
the diffusion coefficient in yellow poplar and red
oak, respectively. These papers, however, are
somewhat unclear regarding the particular
choice of optimization technique used to find the
minimum of the objective function. Another ap-
proach, employed in Liu et al. (2001), is to first
via “inverting” the state equation, determine the
diffusion coefficient as a function in space and
time, and thereby obtain a relatively standard
least squares problem. This approach seems
promising, but is not further discussed in this
paper.

Inverse problems are often described as ill-
posed, and for this reason sensitive to measure-
ment errors (Olek and Weres 2001). An attempt
to achieve better conditioning of the problem is
made in this paper by combining the advantages
of the inverse approach with a sophisticated
measurement technique. The particular combi-
nation adopted has shown promising results in a
preliminary study (Danvind et al. 2004). More-
over, the computational and experimental tech-
niques presented are developed to reduce certain
disadvantages of the inverse technique listed in
(Liu et al. 2001).

The aim of this paper is to derive a specific
scheme for the inverse problem in the context of
diffusion by using a recently proposed math-
ematical framework for parameter identification
(Johansson and Runesson 2005). Here, the radial
moisture diffusion coefficient in Fick’s law for
samples of Norway spruce sapwood under iso-

thermal drying conditions is determined. By
means of X-ray Computed Tomography (CT)
scanning, it is possible to accurately determine
the density distributions and moisture content
(MC) in wood samples. Based on these experi-
mental data and computed results from finite
element (FE) simulations, an optimization
scheme is used to minimize the difference be-
tween observed and computed MC. An advan-
tage to using this approach is that difficult sur-
face measurements and the introduction of as-
sumptions concerning the surface resistance are
evaded. In the literature, several parameteriza-
tions describing the diffusion coefficient depen-
dencies are proposed and each involves a set of
parameter values, cf. Koponen (1984), Hukka
(1999), and Keey et al. (2000). The combination
of optimization technique and an Arrhenius
equation-type parameterization has been shown
capable of describing internal moisture transfer
coefficients during drying in red oak (Simpson
and Liu 1997) and for this reason is used in this
study. Nevertheless, the implementation of any
other parameterization is straightforward. Fi-
nally, the sensitivity of the optimization prob-
lem, i.e. the effects of measurement errors on the
computed material parameters, is studied.

THEORETICAL BACKGROUND

The moisture transport in wood below the fi-
ber saturation point may be described with a
diffusion-type partial differential equation in
space-time, whereby x ∈ � and t ∈ I � (0,T)
denote space and time coordinates, respectively.
The diffusion coefficient in the radial direction
is denoted Dr(p,�), indicating its dependence on
the moisture content �(x,t) [kg/m3], and a set of
parameter values denoted by p. For brevity, the
subscript r is dropped henceforth. The governing
state equation is in the one-dimensional case as-
suming constant cross-section

��

�t
−

�

�x �D�p,��
��

�x � = 0 x ∈ �

� = �D, x ∈ ��D, and qn = h, x ∈ ��h

(1)
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with the initial condition �(x,0) � �0, the do-
main of interest being referred to as � and cor-
responding boundaries being denoted by �� �
��D ∪ ��h. In Eq. (1), qn denotes prescribed
flow, while �D refers to prescribed moisture
content. The aim is to find the values of the
material parameters p that give the optimal fit
between predicted and measured values of the
moisture content. This aim can be formulated as
a constrained optimization problem: Find p such
that the objective function

� =
1

2 �
i=1

NOBS

ci��i�x̄i,t̄i� − �i
OBS�2 (2)

for measured values �i
OBS at specific coordinates

x � x̄i and times t � t̄i with a weight factor ci

(here ci � 1/NOBS) is minimized under the con-
straint that p and � satisfy Eq. (1). It is noted
that, in order to evaluate � for given values of p,
the solution of the state Eq. (1) is needed to
obtain �. The formulation of the objective func-
tion Eq. (2) has the specific advantage of decou-
pling the numerical method needed to solve the
state Eq. (1) from the experimental data. In par-
ticular, it implies that neither the spatial nor the
temporal discretization needs to coincide with
points (x̄i,t̄i) in space-time where the MC is mea-
sured. This important feature gives the flexibil-
ity to choose discretization such that desired ac-
curacy of the results is ensured.

There are numerous general optimization pro-
cedures for minimizing a function under equality
constraints. Commonly, these methods are di-
vided into gradient-based and non-gradient
methods, where the latter do not need analytical
derivatives of the objective function. In general,
non-gradient methods are more likely of finding
the global minimum among many local ones but
also tend to need a greater number of evaluations
of �. Each such evaluation involves the solution
of a FE problem and is therefore computation-
ally expensive. Thus, a gradient-based method is
preferred here. The concept of parameter iden-
tification in terms of optimization is discussed in
Mahnken (1998).

To overcome the difficulties involved in find-
ing analytical expression for the derivative of �

with respect to p (while the equality constraint
Eq. (1) is satisfied), either the direct differentia-
tion or the adjoint system method can be em-
ployed (cf. Kleiber et al. 1997). Here, the adjoint
system method expressed in terms of a Lagran-
gian function will be used. Furthermore, the
derivation of the optimization scheme will be
carried out in a finite element setting. Equation
(1) must then be expressed in terms of FE-
equations in space as well as in time. To this
end, the time interval I � (0,T) of interest is
divided into a number of discrete segments de-
noted by In with length �tn � tn − tn−1, such that
the weak form of the state equation associated
with the time interval n is (Eriksson et al. 1996)

�
�
��

In

���

�t
v + D

��

�x

�v

�x�dt + ���tn−1
+ �

− ��tn−1
− ��v�tn−1

+ ��d� = 0 (3)

�v ∈ V n
0, n � 1, 2, . . . , N where V n

0 is a suit-
able test space associated with the time step n
(the superscripts acting on t are illustrated in
Fig. 1). A finite element discretization corre-
sponding to cG(1)dG(0) is introduced, i.e. the
approximated solution �h(x,t) is piecewise linear
and continuous in space and piecewise constant
(thus, discontinuous) in time. The function
�h(x,t) is represented by nodal values W, linear
basis (shape) functions Nx(x) in space, and
constant basis functions Nt(t) in time. The
spatial-temporal moisture field may then be ex-
pressed by

��x,t� ≈ �h�x,t� = Nx�x�Nt�t�W (4)

Since Nt(t) is piecewise constant in time with
support only at a specific time subintervals In, it
is noted that the time integration in Eq. (3) may
be carried out using that

�
0

T

��x,t�dt = �tnNx�x�W�n� = �tnN�x�W�n�

(5)

where the subscript on the spatial basis functions
has been dropped and, as can be seen in the
above equation, the nodal values have been
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put into a time-dependent vector as W �
[W[1]

T,W[2]
T, . . . ,W[N]

T]T to simplify subse-
quent notations. It is noted that the specific
choice of discretization both in space as well as
time, contrary to a recurrence scheme in time,
implies that the time derivative is acting on the
shape function. Recalling piecewise constant ap-
proximation in time, thus Ṅt � 0, the dot de-
noting the time-derivative. Then, derivatives of
�(x,t) can be expressed in terms of nodal values
and basis functions as

���x,t�

�t
≈ Ṅt�t�Nx�x�W = 0,

��

�x�
t

≈ BW�n�, t ∈ In = �tn−1,tn� (6)

The finite element format of Eq. (3) can be ob-
tained using Eq. (5) and Eq. (6)

�
�

��tnDBTBW�n� − ��h�n−1 NT�d� = 0

n = 1,2, . . . ,N (7)

where ��h�n−1 � �h(x,t+
n−1) − �h(x,t−

n−1) � N(W[n]

− W[n+1]) denotes the discontinuity (jump) that
can arise at the discrete time-nodes in the ap-
proximations, (see Fig. 1). Returning to the
minimization problem, the Lagrangian � is ob-
tained by adding the constraint Eq. (3), using the
Lagrangian multiplier � as a test function, to Eq.
(2). It is noted that � ∈ Vn

0 and, consequently, a

FE-approximation of � is introduced in analogy
to Eq. (4) and Eq. (6) as

� ≈ �h = N�,
��

�t
≈ Ṅ� = 0,

��

�x�
t

≈ B��n�

(8)
where � � [�[1]

T , �[2]
T , . . . ,�[N]

T ]T contains
nodal values of the discretized Lagrangian mul-
tiplier (�h). Then, the Lagrangian may be ex-
pressed in FE-format in terms of contributions
from each time subinterval as

��p,�h,�h� = �
n=1

N

��n��p,�h,�h� (9)

��n� =
1

2 �
i∈ℑn

ci�N�xi�W�n� − �i
OBS�2

+ �
�

�tnD W�n�
T BTB��n�d�

+ �
�

��h�n−1 N��n�d� (10)

where ℑn � {i:ti ∈ In}. A key property of the
Lagrangian formulation is that it allows p, �h,
and �h to be treated as independent; in particu-
lar, �h is not a function of p. The non-fulfilment
of the state equation is embedded in the Lagran-
gian multiplier, �h, which may be viewed upon
as an extra state field (costate). Then, from the
construction of �, a minimum of � corresponds
to a stationary point of �, i.e., the derivatives
with respect to P, W, and � are zero, P being the
vector representation of the set of material pa-
rameters p. Thus, p, �h and �h are sought such
that the residuals, rp � −��p etc., vanish for all
n � 1,2, . . . ,N. This yields

rp = −�
n=1

N

�tn�
�

D�p�W�n�
T BTB��n��d� (11)

r��n� = −�
i∈ℑn

ci�N�xi�W�n� − �i
obs�NT �xi�

− �
�

�tn�D��W�n�
T BTB��n��N

Td�

− �
�

�tnDBTB��n�d� + �
�

��h�nNTd�

(12)

FIG. 1. Principal illustration of the temporal approxi-
mation in dG(0) where Wi is interpolated at a position xi

from W.
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r��n� = − �
�

�tnDBT BW�n�d� − �
�

��h�n-1NTd�

(13)

The derivative of the last term in Eq. (10) with
respect to W yields also a contribution to the
previous time interval n-1; however, taking this
into account recursively allows the correspond-
ing term in Eq. (12) to be expressed as a jump in
�h. Furthermore, Eq. (7) appears again as Eq.
(13) and, hence, the governing state equation
will be satisfied when a stationary point of � is
found. The notation r� � [r�[1]

T, r�[2]
T, . . . ,

r�[N]
T]T is used to collect the components from

all time steps in a vector in the same way as for
W and �, r� being defined analogously. Further,
introducing a short notation via a vector Z con-
taining the unknowns Z � [PT, WT, �T]T and
the residual vector r � [rT

p, rT
�, rT

�]T, Eqs. (11)–
(13) may be expressed as a set of nonlinear
equations

r�Z� = 0 (14)

which is to be solved by means of a Newton-
type method where an update dZ is solved for
from the linear system

K�k�dZ = r�k� (15)

involving K as the derivative of –r(Z) with re-
spect to Z and thus, obtain the new iterate as

Z�k+1� = Z�k� + �dZ (16)

where � is a step length chosen such that the
merit function in Euclidian norm

M��� = norm�r�Z�k� + �dZ�� (17)

is minimized, or, in practice, reduced. The merit
function Eq. (17) is needed to ensure conver-
gence and plays the role of a line search proce-
dure, (cf. Luenberger (2003). It is noted that as
Z(k) closes to the optimum, � tends to unity. The
procedure of computing a direction from the lin-
ear system Eq. (15), computing a step length �
by minimizing Eq. (17), and computing the new
Z from Eq. (16) is repeated until an optimality
criterion is met, in most practical situations
norm(r(Z(k))) < tol. Then, the optimal set of ma-

terial parameters p, as well as the moisture con-
tent distribution �h, can be extracted from Z.
Unfolding the very compact notation K, a more
explicit version of Eq. (15) becomes

�
Kpp Kp� Kp�

Kp�
T K�� K��

Kp�
T K��

T K��

�
�k�

�
dP
dW
d�
� = �

rp

r�

r�
�

�k�

(18)

where the components are second derivatives of
the Lagrangian Eqs. (9)–(10) as

Kpp = �
n=1�

N

��tn�W�n�
T BT B��n��D�pp d�

(19)

Kp��n� = �
�

�tn��W�n�
T BT B��n��D�p�N

+ �B��n��D�pB�d� (20)

Kp��n� = �
�

�tn�BW�n��D�pB d� (21)

K���n,n� = �
i∈ℑn

NT �xi�N�xi�

+ �
�

�tn��D���W�n�
T BT B��n��N

T N

+ �D��B��n��B
T N

+ �D��B��n��N
T B�d� (22)

K���n,n� = �
�

�tn��D��W�n�
T BT�NT B + DBT B�

+ NTN d� (23)

K���n,n+1� = −�
�

NT N d� (24)

Similarly to r� and r�, the matrices Kp� and Kp�

consist of the contributions Kp�[n] and Kp�[n]

associated with each time step n � 1, 2, . . . , N.
The square matrix K�� is constructed by
K��[n,n] on the diagonal while all off-diagonal
terms are zero. Finally, K�� consists of diagonal
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terms K��[n,n] and superdiagonal terms
K��[n,n+1], representing the coupling between
two adjacent time steps, while the remaining en-
tries are zero. Figure 2 illustrates the structure of
the key equation Eq. (18). The parameterization
of the diffusion coefficient D is of Arrhenius’
equation type; see Eq. (25), based on the work in
Simpson and Liu (1997) leading to the material
parameters P � [p1, p2] to be determined

D�p,�� = p1ep2� (25)

The explicit derivatives of D(p,�) with respect
to p and � can be obtained as

D�p�p,�� = � ep2�

p1�ep2�� (26)

D���p,�� = p1p2ep2� (27)

and the second derivatives are given as

D�pp�p,�� = � 0 �ep2�

�ep2� p1�2ep2�� (28)

D�p��p,�� = � p2ep2�

�1 + � p2�p1ep2�� (29)

D����p,�� = p1p2
2ep2� (30)

It is noted that the generalization to a 2D or
3D case is rather straightforward from the FE-
format used in this paper, from the definition of
� in Eq. (10) to the definition of the last com-
ponent in K, Eq. (24). Nevertheless, the diffu-
sion coefficient is then no longer a scalar, and
therefore, the corresponding expression of the
second term in Eq. (10) would be

�
�

�tn W�n�
T BT DB��n�d� (31)

As a consequence, the derivatives with respect
to P (arising in the terms rp, Kpp, Kp� and Kp�)
would then have to be expressed component-
wise for each pi.

FIG. 2. Illustration of the equation system to be solved in Eq. (18).
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MATERIAL AND METHOD

Experimental set-up

A clear wood Norway spruce (Picea abies)
sample with the green dimensions of 42 × 31 ×
205 mm3 in the tangential, radial, and longitu-
dinal direction, respectively, was dried in this
study. The sample contained only sapwood, and
five of its surfaces were coated using poly-
urethane glue (Cascol 1809 from Casco) and
aluminium foil to ensure restricted drying in one
dimension, (see Fig. 3). The coated surfaces
were also thermally insulated using Styrofoam.
During drying, the humidity and temperature of
the circulating air were approximately constant
at 43% H and 50°C corresponding to an equi-
librium moisture content of approximately 7%,
and the air speed was approximately 4 m/s. The
drying from about 135% to 7% MC involves a
receding wet line through the sample, but only
data relevant for diffusion, about 30% MC and
below, are presented further on. Every 10th

minute a density image of the interior in one
position was captured using a Siemens Somatom
AR.T. X-ray CT scanner. Since only radial dif-
fusion was studied, the CT-scanning was per-
formed in the RT plane. At the end of drying, the
sample was cut into five slices, and the final
moisture content distribution within the sample
was determined using the oven-dry method i.e.
drying the sample at 103°C during 24 h. The
resulting average dry density was 469 kg/m3. By

using the final MC and information on the shape
of the sample and the density images, the local
displacements and MC throughout the drying
could be estimated by using a method presented
in Danvind and Morén (2004). The method is
briefly described below. Since moisture move-
ment in one direction was to be studied, mean
MCs in 2 × 30 of smaller 10 × 10 pixels regions
were calculated for 10 equidistant positions in
depth. These 2 × 30 regions can be seen in Fig.
3 represented as a coherent area of either (*) or
(o) marks. The pixel size was 0.135 × 0.135
mm2. The annual rings can be seen as lines
drawn on top of the CT image. During the dry-
ing, the temperatures at two internal points and
at the surface were also monitored. However,
these are not presented here since the tempera-
ture gradient was found to be negligible over the
cross-section. The sample temperature was
found constant at 50°C in the diffusion regime of
drying, which was studied here.

Perturbation of moisture content

The method in Danvind and Morén (2004)
used information of the boundary shape of the
scanned object in CT images to estimate dis-
placement and deformation of the studied object.
Each CT image was processed to a binary im-
age, so that object pixels were set to one and
background pixels were set to zero. The relative
position of a pixel in the undeformed object was
calculated by studying the CT image from four
corners. The position of that pixel was assumed
to be at the corresponding relative position in the
deformed image. By using the estimated dis-
placements and strains in combination with mea-
sured density, the moisture content was calcu-
lated. Using a slightly different evaluation tech-
nique, Danvind (2003) found the measurement
errors to be approximately a normal-distributed
stochastic process with zero mean value and
standard deviation (SD) 0.6% MC. It can be con-
cluded, however, that the difference in evalua-
tion techniques affects only quantities that have
a relatively small contribution to the total error.
Since the measuring volume for the test here is
much larger than the one used in Danvind

FIG. 3. Illustration of test set-up based on CT images of
a Norway spruce sample cross-section in the RT plane at the
end of drying. Each mark, (*) or (o), is in the center of a 10
× 10 pixels region in the original CT image, for which the
MC was evaluated. Lines are drawn to form an idea of
annual ring orientation.
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(2003), 40.6 × 2.7 × 5 mm3 versus 2 × 2 × 1.5
mm3, the relative MC errors were expected to be
smaller in the trial presented here. Also, the
sample was not dried to 0% MC during the test,
for determining the dry weight. Instead it was
cut into five slices after the test run for determi-
nation of final MC and dry weight at different
distance from the evaporation surface. There-
fore, a small absolute measuring error, either
lowering or raising all MC, could have been in-
troduced due to errors in the determination of the
dry density. As mentioned in the introduction,
most inverse identification problems are sensi-
tive to measurement errors. In the worst case, the
diffusion coefficient predictions obtained may
be overwhelmed by the noise in the experimen-
tal data. To study the sensitivity in this paper, the
moisture content observed was synthetically per-
turbed in four steps: no disturbance SD � 0%
MC (i.e. the original data), small disturbance SD
� 0.3% MC, medium disturbance SD � 0.6%
MC, and large disturbance SD � 0.8% MC.
These perturbations affect the data that already
contains the true noise from the experiment.

RESULTS AND DISCUSSION

Because of the experimental set-up, the
boundary conditions are assumed to be known
flux (i.e. zero) at the bottom and prescribed
moisture content � � �D at the top, where �D

is interpolated in time from data at the measure-
ment points closest to the free surface. With
�i

OBS as the remaining data from the CT-
scanning, the optimization scheme described
above was run for four different levels of syn-
thetic perturbation as described earlier. The fi-
nite element discretization consisted of 30 space
elements and 300 time elements. This was the
appropriate element division found when com-
putational effort was balanced with accuracy.

Figure 4 shows the iteration procedure for two
of the runs. Nine iterations were required to find
the optimal set of parameters without perturba-
tion of moisture content, the last three iterations
being positioned almost on top of each other
and, hence, difficult to distinguish in the figure.
A valley in the contour line of the objective
function can be seen extending from top left and
opened out at bottom right. At further right, out-
side the figure, the valley is closed. It appears
that the developed algorithm finds the global
minimum, the objective function defined in Eq.
(2) being 0.677 for the undisturbed data. The
optimization algorithm needed three additional
iterations when the moisture content was per-
turbed with SD � 0.6% MC. Depending on the
specific perturbation, which is a stochastic pro-
cess, the number of iterations can vary some. In
the particular run shown in the figure, the ob-
jective function was found to be 4.685. This
means, of course, that the diffusion model can-

FIG. 4. Contour lines of � and the sequence of P (*) during optimization without perturbation (left) and with pertur-
bation SD � 0.6% MC (right).
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not fit to the disturbed data as well as to the
undistorted moisture content. It can also be
noted that the search path differs somewhat al-
though the starting point, P0, is the same. The
corresponding diffusion coefficients are shown
in Fig. 5 together with results from the literature
(Rosenkilde and Arfvidsson 1997). In Hukka
(1999) it was shown that difference between dif-
fusion coefficients in cross-grain direction for
Norway spruce and Scots pine heartwood is very
small, the former being somewhat higher. This
motivates the choice of comparing the results
with coefficients from Rosenkilde and Arfvids-
son (1997) to control the reasonableness, al-
though samples there consisted of Scots pine
tested at 60°C. A good agreement can be seen in
Fig. 5 where the possible lower diffusion co-
efficient in Scots pine may to some extent
have been cancelled by the 10°C difference be-
tween the experiment temperatures. The good
accordance of the coefficient even with optimi-
zation based on distorted moisture contents is
noted. To further ensure correctness of the ob-
tained diffusion coefficient, the scheme de-
scribed in Eriksson (2004) was used to compute
the MC that was to be compared with measured
MC. The results presented in Figs. 6 and 7 are

converted from � to moisture content in percent
by use of the average dry density of the sample.
In Fig. 6, the MCs in the sample are presented at
six snapshots, whereas in Fig. 7, the gradual de-
velopments of the MCs at specific points are
presented. It can be seen that the fit is very good.
Further, even using the most perturbed data, rea-
sonable diffusion coefficients could be ex-
tracted. This is not surprising, although the per-
turbation may seem to deteriorate the moisture
content profiles, (see Fig. 7 (right); the specific
choice of objective function is relatively insen-
sible to normally distributed errors, the com-
puted moisture contents being almost identical,
(cf. Fig. 7). Finally, further information about all
simulations and results are concluded in Table 1
below.

CONCLUSIONS

Experimental moisture content determination
by use of X-ray CT scanning, combined with a
numerical optimization procedure based on the
finite element method, was used to determine
the value of the radial diffusion coefficient for a
sample of Norway spruce sapwood. In contrast
to the ill-posed nature of inverse problems
pointed out in the literature, the combined tech-
nique seems to result in a relatively robust op-

FIG. 5. The diffusion coefficient D versus the moisture
content for Norway spruce sapwood in radial direction to
grain. The curves are from the present study, while stand-
alone crosses denote results from Rosenkilde and Arfvids-
son (1997).

FIG. 6. The measured (cross mark) and calculated
(lines) development of moisture profiles during drying of a
Norway spruce sapwood sample at 50°C.
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timization procedure. The developed numerical
algorithm for the determination of material pa-
rameters has the advantage of not depending on
specific space and time coordinates of the mea-
sured moisture contents. Further, neither the dif-
ficult estimation of the moisture content at sur-
face nor any assumptions concerning the surface
resistance are required. The results showed that
the computed diffusion coefficient agreed rea-
sonably well with values found in the literature.
Using an Arrhenius’ equation type moisture con-
tent dependency of the diffusion coefficient, the
calculated MCs were in good accordance with
those obtained in the experiments. Based on the
results presented, it can be concluded that the
objective function was appropriately chosen for
the currently used measurement technique, since
it handles expected measurement errors in a
good fashion. It is also noted that the described
optimization scheme can be used to accurately
study non-Fickian flows if data from successive
scanning and cutting of a sample are available.
Moreover, the extension of the presented

scheme to multidimensional cases or other pa-
rameterizations should be straightforward. For
instance, a parametrization can be applied incor-
porating radial (or density) dependence to study
whether it significantly influences the diffusion
coefficient. By replacing the diffusion model,
the general idea can be used in a more complex
model (e.g. phase separation) for drying above
fiber saturation. Finally, it is noted that it is pos-
sible within the presented optimization scheme
to compute estimates (Johansson and Runesson
2005) of how much perturbations in the mea-
sured data effect the optimal values of the ma-
terial parameters.
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