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ABSTRACT

Bending modulus of elasticity measurements have been useful and profitable for decades in the sorting
of dimension lumber for its structural quality. Bending and tensile strengths of lumber are known to be
correlated with modulus of elasticity. Previous research indicates that bending elasticity on short spans,
shorter than can be practically measured with precision, may improve correlation with strength. It is
expected, therefore, that the optimal estimation method of the present two-part paper will be applied in
the machine stress rating (MSR) process for more accurate sorting of dimension lumber into MSR grades.

Using weighting functions called “span functions,” the estimation method processes a sequence of
bending measurements from overlapping spans, such as those obtained from equipment for MSR lumber
production. A span function is specific to the support configuration of a particular bending span and
defines how much the local elastic properties along a beam contribute to a measurement. Intuitively, the
local elasticity values of a beam near span center affect the measurement more than values near span ends.
Span function defines this effect as a function of position along the bending span. In Part I, a procedure
is developed for computing span function of a general bending span configuration. Span functions are
graphed for bending spans of a production-line machine used in MSR lumber production and for other
bending span configurations. In Part II, use of span functions in optimal estimation of local elasticity is
described.

Keywords: Span function, local modulus of elasticity, local compliance, stress-rated, MOE, MEL, MSR,
beam.

INTRODUCTION

Bending modulus of elasticity measurements
have been useful and profitable for decades in
the sorting of dimension lumber for its structural
quality. Bending and tensile strengths of lumber
are known to be correlated with modulus of elas-
ticity. Previous research indicates that bending
elasticity on short spans, shorter than can be
practically measured with precision, may im-
prove correlation with strength. It is expected,
therefore, that the optimal estimation method of
the present two-part paper will be applied in the
machine stress rating (MSR) process for more
accurate sorting of dimension lumber into MSR
grades.

Wood is a highly variable material, and there
has been significant historical interest in better

determination of local modulus of elasticity.
Clearly, the assumption that local modulus of
elasticity within a bending span is uniformly the
same as measured modulus of elasticity from a
bending measurement is made only because of
the inability to obtain the local values from
bending measurements. An early paper (Kass
1975) discusses some of the precision difficul-
ties involved with bending measurements for
short span lengths. Kass described method and
laboratory equipment for determining bending
values on various span lengths from 203 mm to
610 mm and was able to show evidence of a knot
corresponding to minima for short spans that
was not evident from longer span data. Other
work has shown better correlation with strength
when short spans are used (Orosz 1976).
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OBJECTIVES

In Part I, the objectives are to define “span
function,” to develop a general procedure for its
computation, and to present examples of useful
span functions in graphical form. In Part II, a
method is presented that uses a sequence of
bending measurements and their corresponding
span functions to optimally estimate local elas-
ticity values. While the work has been described
as having mathematical complexity1, the steps
included are sufficiently described so that a se-
rious reader should be able to follow the devel-
opment and duplicate the work.

BACKGROUND

Modulus of elasticity and compliance

Almost all the literature involving bending
measurements and the elasticity properties lead-
ing to them has involved modulus of elasticity,
but the present work uses compliance. From
measured modulus of elasticity Em, measured
compliance is Cm � 1/Em. Similarly, from local
modulus of elasticity E, local compliance is C �
1/E. Compliance, not modulus of elasticity, is
used because the derivation shows it is compli-
ance that has a desired convolution relationship
useful for the estimation method of Part II.

Because E and cross-sectional moment of in-
ertia “I” appear as a product in flexural loading
equations (Higdon et al. 1960), the results may
be generalized. The elastic property definitions
are modified to include moment of inertia so that
measured compliance becomes Cm � 1/(EI)m,
where (EI)m is the bending measurement of the
EI product, and local compliance C � 1/(EI) is
defined from the local values E and I. Defining
a variable local compliance as the reciprocal of
the EI product allows for either E, I, or both E
and I to be variable. In much of the prior work
using flexural loading equations, computational
simplification is achieved by neglecting varia-
tions in E and I. The present contribution is in

dealing with the situation when these variations
are not negligible.

Formulas for computing Cm are derived from
equations relating force, shear, moment, slope,
and deflection, each (except force) as an integral
of the preceding quantity (Higdon et al. 1960).
The slope equation includes in the integrand, the
local factors E and I in the denominator, as well
as bending moment in the numerator. As in Hig-
don et al. (1960), the amount of bending is as-
sumed small, and plane cross-sections of the
beam before bending are assumed to remain
plane after bending. The implication is that shear
deflections in the beam are negligible. This as-
sumption is reasonable for bending spans used in
high-speed production-line machines wherein
the bending span length to beam depth ratio is on
the order of 32 and where beam ends usually
extend past the bending span ends. For bending
configurations having much smaller length-to-
depth ratios, this assumption may be question-
able.

Review of previous work

For simply-supported, center-loaded bending
spans, Bechtel (1985) derived a weighting func-
tion, illustrated here as Fig. 1, showing the effect
on bending compliance measurements contrib-
uted by the local compliance at each point along

1An overview is available for those wishing to avoid the
mathematical details (Bechtel et al. 2007).

FIG. 1. Beam simply-supported and center-loaded on a
bending span covering only a part of the beam length. The
applicable span function is shown aligned with the bending
span and illustrates how much the local compliances con-
tribute to measured compliance.
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a beam. This cusp-shaped function is a combi-
nation of two quadratic functions, which, as ex-
pected from intuition, is greatest at span center
and least at span ends. The name span function
is applied to this as well as to weighting func-
tions for other types of bending spans.

MEASURED COMPLIANCE

There are two abscissa coordinates defined in
Fig. 1. A beam coordinate identifies a point on
the beam relative to its leading end, here taken
as the right end of the beam. A beam coordinate
is distance along the beam positive to the left
from the beam’s right end. A span coordinate
identifies a point of the bending span relative to
a span reference, which in Fig. 1 is the center of
the span. A span coordinate measures distance
positive to the right from the span reference. A
“measurement point” is a point on the beam that
coincides with the bending span reference. As
the beam in Fig. 1 moves to the right, the mea-
surement point moves leftward along the beam.

Measured compliance Cm(w) is the compli-
ance measurement when the measurement point
on the beam is at distance w from its leading
end. It is given by:

Cm�w� =
D�w�

F�w�
(1)

where D(w) is a function of the support deflec-
tions, and F(w) is a function of the support
forces. Analysis for the configuration of Fig. 1
identifies three supports, one at each end of the
bending span and one in the center. In Fig. 1,
D(w) is the measured incremental deflection at
the center support as a result of the applied load
weight F(w). F(w) will not change with w in this
case, but D(w) will change as the beam moves to
the right (increasing w). Given a span function
h(x), where x is a span coordinate, measured
compliance may be written as a convolution in-
tegral:

Cm�w� = �−L�2

L�2
C�w − x�h�x�dx (2)

Equation (2) weights the local compliance
C(w-x) of the beam at distance w-x from its
leading end with the weight h(x)dx and sums all
such weighted compliances over the extent of
the bending span to arrive at a measured com-
pliance Cm(w) at the measurement point. The
limits of integration could equally well have
covered the length of the beam, but have been
limited in Eq. (2) because it is recognized that
the span function h(x) is zero outside the span
from −L/2 to L/2. A property of span functions
may be obtained from Eq. (2). If the local com-
pliance is uniform, that is, C(w-x) � Co, then
certainly, the measured compliance should also
be Co. By removing the constant Co from the
integral, it is seen that the integral of h(x) is one;
that is, the weights add to one.

SPAN FUNCTION DETERMINATION

AS A DERIVATIVE

Consider the change in measured compliance
if an infinitesimally small impulse of compli-
ance is added to the compliance function at dis-
tance � from the leading end of the beam. This
can be modeled in Eq. (2) by adding a compli-
ance impulse of weight b at position � and letting
b approach zero. The local compliance Cb,�(u) as
a function of the beam coordinate u after adding
the impulse is:

Cb,��u� = C�u� + b��u − �� (3)

C(u) is the local compliance before adding the im-
pulse, and � is a Dirac delta function defined by:

��u − �� = ��, if u = �

0, otherwise
such that

��
a1

a2
��u − �� du = 1, if � ∈ �a1,a2�

�
a1

a2
��u − �� du = 0, if � ∉ �a1,a2�

(4)
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The arbitrary limits of integration a1 and a2 sat-
isfy a1< a2. Substituting local compliance func-
tion Cb,�(u) from (3) into the convolution inte-
gral of (2) gives:

Cm�w,b,��

= �−L�2

L�2
Cb,� �w − x�h�x�dx

= �−L�2

L�2
�C�w − x� + b��w − x − ��� h�x�dx

= Cm�w� + b�−L�2

L�2
��w − x − ��h�x�dx

= Cm�w� + bh�w − ��

= Cm�w� + bh�x� = Cm�b,x�,

where x = w − � (5)

In Eq. (5), first, x is a dummy variable of inte-
gration. After it is removed by integration, x is
used again to replace w-� and should be consid-
ered as the distance measured, positive to the
right, from the span reference to the impulse.
Notation in Eq. (5) for measured compliance
Cm(w,b,�) first references position w of the mea-
surement point and impulse position � as beam
coordinates. Then it is simplified to Cm(b,x) to
indicate position x � w-� of the impulse as a
span coordinate. Cm(b,x) should be interpreted
as the measured compliance when the beam lo-
cal compliance is C(w) plus a compliance im-
pulse of weight b at distance x to the right of the
span reference. From these definitions, it is seen
that Cm(b,x)|b�0 � Cm(0,x) � Cm(w). Rear-
ranging the result from (Eq. 5) and letting b go
to zero:

h�x� = lim
b→0

�Cm�b,x� − Cm�0,x�

b � =
�Cm�b,x�

�b
|b=0

(6)

Thus, the span function at x is given as the par-
tial derivative of measured compliance Cm(b,x)
with respect to impulse weight b, evaluated at
b � 0. By exploring this derivative over x, the
span function is obtained.

Computed versus measured span function

The span function h(x) may be computed
from Eq. (6) as will be demonstrated. However,

it can, in principle, also be obtained by measure-
ment. Measured compliance without impulse is
subtracted from measured compliance with im-
pulse, this being repeated for impulse positions
along the bending span. Then the difference
function is scaled so that, as a function of im-
pulse position, it integrates to one. A compliance
impulse can be approximated in the beam, e.g.
by drilling holes in the beam at the desired lo-
cation or by a saw kerf. But there are problems
with this approach. First, as the impulse be-
comes suitably small, noise riding on the mea-
surement is large relative to the difference sig-
nal. Second, there is the difficulty of maintaining
a given local compliance function C(u) while
changing the relative position of the impulse;
however, this problem is eliminated for a beam
having uniform compliance (except for the im-
pulse). Obtaining the impulse weight is not a
problem, because scaling the difference function
as described is equivalent to dividing the differ-
ence function by the impulse weight.

For most cases where support conditions are
known, it is simpler and more accurate to com-
pute the “measured” compliance. Rather than
start with just any background local compliance
function C(u) as in Eq. (3), it is much more
convenient to use a uniform compliance Co as
the background compliance. Usually, the partial
derivative of Eq. (6) will be computed from the
limiting operation of Eq. (6).

Approach to computing span function

The approach consists of defining a test func-
tion of local compliance Ct(u) comprising a con-
stant Co plus an impulse of weight b at position
� from the leading end of the board:

Ct�u� = Co + b��u − �� (7)

For this test function of local compliance, the
difference of measured compliance with and
without impulse is computed and divided by the
weight b, and the limit is taken as b approaches
zero. These steps, per Eq. (6), are repeated for all
desired values of the independent variable x.
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The only remaining difficulty is in the compu-
tation of the measured compliance with the im-
pulse included in the local compliance function.
Without this impulse, measured compliance is
simply the uniform value Co.

Computational details for general
span configuration

Consider the general bending span configura-
tion of Fig. 2, where an arbitrary number n of
supports are located at x1, x2, . . . , xn relative to
the span reference 5. At these supports, the
forces and deflections are F1, F2, . . . , Fn and D1,
D2, . . . , Dn respectively with positive sense up-
ward. Using methods from Higdon et al. (1960),
the following system of equations may be writ-
ten:

Force

F�x� = �
i=1

n

Fi��x − xi�

Shear

V�x� = �
i=1

n

Fi�x1

x
��u − xi�du = �

i=1

n

FiU�x − xi�

Moment

M�x� = �
i=1

n

Fi�x1

x
U�u − xi�du = �

i=1

n

Fir�x − xi�

(8)
Slope

S�x� = S1 + �
x1

x
C�w − u�M�u�du

= S1 + �
i=1

n

Fi�x1

x
C�w − u� r�u − xi�du

Deflection
D�x� = D1 + S1 �x − x1�

+ �
i=1

n

Fi �x1

x�
x1

v
C�w − u�r�u − xi�du dv

In Eqs. (8), effects of distributed loads (e.g. from
mass of beam) are neglected. Shear and moment
to the left of the first support in Fig. 2 or to the
right of the last support have been assumed to
cause negligible effect. This assumption can be

made reasonable by defining additional supports
to reduce these effects. The clamp roller sup-
ports on some production-line machines (e.g. see
Fig. 3) make this assumption reasonable. S1 and
D1 are respectively the beam slope and deflec-
tion at the first support x1. Concentrated forces
at the supports are introduced via impulse func-
tions. The symbols U and r represent the unit
step and the unit ramp defined by:

Unit step function U�x − xi� = �0, if x � xi
1, if x � xi

(9)

Unit ramp function r�x − xi� = �0, if x � xi
x − xi, if x � xi

The last of Eqs. (8) is evaluated at each of the
n-1 support locations x2, . . . , xn, and the nota-
tion is simplified from D(xj) to Dj:

Dj = D1 + S1�xj − x1�

+ �
i=1

j−1

Fi �x1

xj�
x1

v
C�w − u�r�u − xi�du dv,

for j = 2, . . , n (10)

FIG. 2. Beam on a bending span having a general system
of n supports at locations x1 through xn. Concentrated forces
at the supports and deflections at the supports have positive
sense upward. Beam coordinate “w” increases leftward
from leading end 7. Measurement point 13 on the beam is
shown aligned with a span reference 5. Span coordinate “x”
increases rightward from the span reference.

FIG. 3. A production-line configuration of seven sup-
ports is illustrated with a beam 2 engaging only five of
them.
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The upper limit of the sum was changed to j-1
because for higher indices, the ramp function is
zero (in the integrand u � v � xj, and hence the
argument u − xi � 0 for i � j). The double
integral may be reduced to a single integral by
changing the order of integration:

Dj = D1 +S1�xj − x1�

+ �
i=1

j−1

Fi �x1

xj
C�w − u�r�u − xi� �u

xj
dv du

= D1 + S1�xj − x1�

+ �
i=1

j−1

Fi�xi

xj
C�w − u� �xj − u��u − xi�du,

for j = 2, . . , n (11)

The change in order of integration and in inte-
gration limits from Eq. (10) to the first expres-
sion of Eq. (11) is best understood by sketching
the triangular region defined by these limits in
the two-dimensional (u,v) plane of integration.
Because the ramp function is zero for u < xi, the
lower integration limit in the second line of Eq.
(11) is changed from x1 to xi , and then r(u-xi) �
(u-xi). The notation is further simplified by de-
fining:

Ii,j = �
xi

xj
C�w − u��xj − u��u − xi�du, j � i (12)

and, without loss of generality, D1 � 0, so that
the n-1 Eqs. (11) may be written:

Dj = S1�xj − x1� + �
i=1

j−1

FiIi,j, j = 2, …, n (13)

The introduction of two additional equations
summing forces to zero in the vertical direction
and summing moments to zero in the plane of
bending about the last support (system is not
accelerating either in translation or in rotation),
allows a system of n + 1 equations to be written
in matrix form as:

WF = D (14)

where:

W =�
I1,2 0 … 0 0 x2 − x1

I1,3 I2,3 5 � � x3 − x1

� � 5 0 � �

I1,n I2,n … In−1,n 0 xn − x1

1 1 … 1 1 0
xn − x1 xn − x2 … xn − xn−1 0 0

�,

F =�
F1

F2

�

Fn−1

Fn

S1

�, D =�
D2

D3

�

Dn

0
0

� (15)

Inserting the test function Ct(u) into the integral
of Eq. (12) gives:

Ii,j = �
xi

xj
�Co + b��w − u − ����xj − u��u− xi�du

= Co�xi

xj
�xj − u��u − xi� du

+ b �
xi

xj
��x − u� �xj − u��u − xi� du

= Co

�xj − xi�
3

6
+ bdi,j�x� (16)

where x � w-� is the position of the impulse in
the span coordinate system and di,j(x) is de-
fined by:

di,j�x� = ��xj − x��x − xi�, if xi � x � xj

0, otherwise

(17)

Using Eq. (17) in (16) and then that result in
matrix W from Eqs. (15), W may be written as
the sum of two parts:

W = Wo + bWd �x� (18)

where Wo and Wd(x) are:
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SPECIFIC USEFUL BENDING

SPAN CONFIGURATIONS

Production-line machine

In each bending section (see Fig. 3) of one
type of machine commonly used to produce ma-
chine stress-rated lumber, a beam fully engaged
will contact seven supports (n � 7). The sup-
ports are defined by rollers, and the upper six
rollers marked 8 are motor driven to propel the
beam 2 in direction 3. Six lower rollers marked
1 clamp the beam firmly against the upper roll-
ers to define beam deflections at six support
points. The roller marked 9 fixes the deflection
at the 4th support where the load is measured by
load cell 6. Measured compliance is given by:

Cm �b, x� =
K

F4
=

K

�F	4
=

K

�W−1D	4

(22)

The calibration constant K is adjusted so that
for a beam having uniform local compliance
Co, and thus impulse weight b � 0 and ma-
trix W � Wo, the measured compliance is
Cm(0,x) � Co. The subscripted brace notation,
for example {F}4 introduced in Eq. (22), denotes
the fourth component of the vector enclosed in
the braces.

In the following derivation, Wd(x) is written
as Wd, its dependence on x being understood.
Use is made of the fact that an inverse matrix
(I+bA)−1 may be replaced with I-bA for very
small scalar b, where the identity matrix I agrees
in size with matrix A. Similarly, the fraction
1/(1-ba), where a is a scalar, may be replaced
with 1+ba when b is very small. The span func-
tion h(x) is computed in closed form per Eq. (6)
as detailed by the following steps.

Wo =�
Co �x2 − x1�3�6 0 			 0 0 x2 − x1

Co �x3 − x1�3�6 Co �x3 − x2�3�6 5 � � x3 − x1

� � 5 0 � �

Co �xn − x1�3�6 Co �xn − x2�3�6 			 Co �xn − xn−1�3�6 0 xn − x1

1 1 			 1 1 0
xn − x1 xn − x2 			 xn − xn−1 0 0

� (19)

Wd�x� =�
d1,2�x� 0 			 0 0 0
d1,3�x� d2,3�x� 5 � � �

� � 5 0 � �

d1,n�x� d2,n �x� 			 dn−1,n �x� 0 0
0 0 			 0 0 0
0 0 			 0 0 0

� (20)

For example, if x happens to be located between the second and third supports:

Wd�x� =�
0 0 0 			 0 0

�x3 − x��x − x1� �x3 − x��x − x2� 0 			 0 0
� � � 5 � �

�xn − x��x − x1� �xn − x��x − x2� 0 			 0 0
0 0 0 			 0 0
0 0 0 			 0 0

� , if x2 � x � x3 (21)
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h�x� = lim
b→0
�Cm�b,x� − Co

b �
= lim

b→0

1

b� K

�F	4
− Co�

= lim
b→0

1

b� K

�W−1D	4
− Co�

= lim
b→0

1

b� K

��Wo + bWd�
−1D	4

− Co�
= lim

b→0

1

b� K

��I + bWo
−1 Wd�

−1Wo
−1 D	4

− Co�
= lim

b→0

1

b� K

��I − bWo
−1Wd�Wo

−1 D	4
− Co�

= lim
b→0

1

b� K

�Wo
−1 D	4 − b�Wo

−1 WdWo
−1 D	4

− Co�
= lim

b→0

Co

b 	
1

1 − b
�Wo

−1WdWo
−1 D	4

�Wo
−1 D	4

− 1

= lim

b→0

Co

b �1 + b
�Wo

−1WdWo
−1D	4

�Wo
−1D	4

− 1�
= Co

�Wo
−1WdWo

−1D	4

�Wo
−1 D	4

(23)

It is possible, although not necessary, to avoid
entering a value Co for the arbitrary constant
compliance. By multiplying the second to last of
the equations in the matrix system of Eq. (14) by
Co so that the 1’s in Wo become Co, it can be
shown that the constant compliance Co cancels
in the span function computation. This involves
partitioning the Wo matrix into four component
matrices, only one having Co as a factor. In the
upper-left component matrix of the partitioned
inverse of Wo, the constant compliance Co will
appear only as the multiplier 1/Co. This compo-
nent matrix is the only one needed in the com-
putation of span function because of the zeros in
vector D and matrix Wd. Because the inverse
matrix Wo

−1 appears as a factor twice in the
numerator for h(x) of Eq. (23) and once in the
denominator, all factors of Co cancel in the com-
putation. These details can be used to write the

span function without specifying Co. The result,
reinserting notation showing dependence of Wd

on x, is:

h�x� =
�W•

−1 Wd �x�W•
−1D	4

�W•
−1 D	4

(24)

where W• is the matrix of Eq. (19), but with Co

removed or just set to one.

W• = Wo
Co
= 1 (25)

In the configuration of Fig. 3, there are actually
5 different span functions applicable for beams
longer than the distance between first and last
supports. As a beam enters the support system,
useable measurements are possible when the
beam’s leading end, marked 7 in Fig. 3, first
engages support five as shown. From there until
it engages support six, a five support system is
applicable, and the span function for it is com-
puted similarly to the one above. And then, until
the leading end engages support seven, a six
support system is applicable. Thus, first 5, then
6, then 7, then 6, and then 5 supports are appli-
cable. The last two are obtained as the trailing
end 10 of the beam disengages the first support
and then the second. Figure 4 illustrates all five
of these span functions 31, 32, 33, 34, and 35 in
sequence as the beam progresses rightward en-
gaging respectively five, six, seven, six and five
supports. The differences in span functions
among the 6 and 7 support spans are not appar-
ent on the scale of Fig. 4. Differences among the
5 and 7 support cases are readily apparent.

Bending proof load testers used to measure
bending compliance

In North America two different configurations
are commonly used in bending proof load testers
for off-line quality control of bending stiffness
where, usually, bending is in the stiff direction
(edgewise). Figure 5 illustrates both configura-
tions. There are four equally spaced supports
that provide loading of a beam 2. Loads are ap-
plied equally in one direction at the inner two
loading supports with equal reaction forces in
the opposite direction at the outer two supports.
However, in the first configuration, beam deflec-
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tion is measured 54 as the average of the support
deflection at the inner two loading support
points, while in the second; deflection is mea-
sured 55 at span center. A similar process is used
as for the production-line machine to compute
span function. For the first configuration, the
computed measured compliance Cm is from a
ratio of deflection to force where the deflection
is the average of the deflections at the inner
loading supports and the force is the sum of the

forces at those supports. In this case the brace
notation (see Eq. (22) and discussion) is rede-
fined as a combination of the forces and deflec-
tions at the inner loading supports. For analysis
of the second configuration, a zero-force center
support point is introduced as an additional sup-
port between the two inner supports, and the
deflection at center span is measured at this sup-
port. A five support system is solved where the
center support force is specified as zero. Except
for this additional complication, a similar pro-
cess is used. Span functions for both of these
two configurations of proof testers are illustrated
in Fig. 6. Full details of these computations may
be found in a United States patent specification
(Bechtel et al. 2006). From Fig. 6, it is clear that
span functions for these machine configurations
are not identical even though bending moments
in a tested beam are. Compliances along the cen-
ter third of the span contribute equally in the first
case, marked 40 in Fig. 6, but not in the second,
marked 41. This difference could be important
to those specifying procedures for bending tests
of beams, e.g. (ASTM 2005).

CONCLUSIONS

Span function is defined as a weighting func-
tion that describes how local compliances in a
beam affect a bending measurement of compli-
ance. The span function depends on both the
position of a local compliance relative to the

FIG. 4. Span functions for the five applicable spans of
Fig. 3 for beams longer than x7-x1. The sequence of 5, 6, 7,
6, and then 5 supports engaging the beam as the beam
progresses to the right through the system has, respectively,
the span functions labeled 31, 32, 33, 34, and 35. The span
functions for the 6- and 7-support cases are indistinguish-
able from one another on the scale of this graph. The 5-sup-
port span functions 31 and 35 are clearly different from the
others and from each other.

FIG. 5. Mechanical schematic for two commonly used
bending proof load testing configurations. The first mea-
sures deflection at 54 as the average of the loading support
deflections. The second measures deflection 55 at span cen-
ter.

FIG. 6. Span functions for the two configurations of Fig.
5. Span function for deflection measurement 54 in Fig. 5 is
shown as curve 40. Span function for deflection measure-
ment 55 in Fig. 5 is shown as curve 41.
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bending span and on the bending support con-
figuration used. A span function may be evalu-
ated as a partial derivative of measured compli-
ance with respect to impulse weight when an
impulse of compliance is added to the local com-
pliance function. Examples for several useful
bending span configurations are given. Span
functions as computed here in Part I are useful
to the method of Part II for optimally estimating
local compliance values.
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