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ABSTRACT 

This study examines the elastic buckling of long rectangular plates made of paper and subjected to 
compressive axial loading. The model is appropriate for the facing and flute components of corrugated 
fiberboard. A dimensionless stiffness, S, and mean Poisson's ratio, v, characterize the dimensions of 
the plate and the nonlinear orthotropic stress-strain relation of paper. The dimensionless buckling 
stress ? depends on S, v, and the plate edge condition, which can be fixed or simply supported. An 
examination o f ?  versus S predicts the stiffness needed to prevent elastic buckling and shows how the 
significance of edge restraint and material nonlinearity vary with S. An iterative solution is given for 
doing the analysis. Comparing the results obtained assuming fixed edges to those obtained assuming 
simply supported edges explains how fiberboard strength may vary due to component variations. 
Comparing the results obtained for nonlinear materials to those obtained for linear materials explains 
why fiberboard edgewise compressive strength cannot be accurately predicted from only the compo- 
nents' strengths. 

Keywords: Plates, elastic stability, buckling, corrugated fiberboard, paper, material failure, edgewise 
compression. 

INTRODUCTION 

In this study we consider theoretically the elastic buckling of long rectangular 
paperboard plates under compressive loading in the longitudinal, y-direction. 
Shear, lateral, i.e., x-direction, or other loads such as bending and twisting are 
not considered. Two conditions of rotational edge restraint are considered: Lon- 
gitudinal edges either both simply supported or both fixed, and both edges re- 
strained from lateral movement. The solution is based on equations, derived by 
Johnson and Urbanik (1984), for the nonlinear deformation of plates of paper 
material. Their theory incorporates the nonlinear orthotropic material behavior 
of paper. Aside from our consideration of paper, the results of this study by 
themselves contribute to the literature of plate theory. 

A paperboard section of corrugated board having edges coinciding with the 
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gluelines can be considered as a long thin plate if the effects of curvature induced 
by the corrugating operation are small and can therefore be neglected. The edge 
condition is considered elastic, i.e., intermediate between fixed and simple sup- 
port, due to the mutual restraint between facings and flutes. Hence, in these 
fiberboard structures the failure stresses due to elastic instability would be bounded 
by the results from our analysis. 

Paperboard plates are considered under longitudinal loading when the fiber- 
board is compressed parallel to the flutes. The longitudinal loading condition 
considered here is typically in the paper's cross direction (CD), but the parameters 
of this theoretical analysis can be switched to investigate machine-direction (MD) 
loading. 

This study was motivated by our earlier work (Johnson et al. 1979) in which 
we showed how to calculate the edgewise compressive strength of single-wall 
fiberboard. Simplifying assumptions in that work limited its scope to isotropic 
paperboard components in the flutes and both facings. The results were a method 
for optimally matching components based on the stress-strain relations and pre- 
dicted failure modes. Lightweight paper combinations were found to trigger local 
instability while heavyweight paper combinations resulted in compression being 
the failure mechanism. The optimal design with minimum fiber weight was when 
both facings and flutes simultaneously initiated structural collapse, be it by local 
instability or by compression. 

The implications for more efficient and effective fiber utilization prompted a 
more accurate thin-plate theory (Johnson and Urbanik 1984) encompassing non- 
linear and orthotropic paper behavior. The expression proposed in Johnson and 
Urbanik (1 984) for the edgewise compression of paper in the cross direction is 

where a is the stress, t is the strain, and c, and c, are material constants. Equation 
(0.1) is written for the cross direction of the paper so that constants c, and c, are 
appropriate to that direction. The same form of relation with different material 
constants holds for uniaxial compression in any direction. Using Eq. (0.1), the 
theory given in Johnson and Urbanik (1984) yields an expression for the strain 
energy on which a general biaxial theory is based. 

As specifications for corrugated fiberboard change from material to performance 
criteria, the ability of paperboard to remain elastically stable under edgewise 
loading warrants increased attention. Manufacturers need to alter paper-weight 
combinations to optimally match strength and cost considerations. Advanced 
concepts in papermaking, and additives designed to resist moisture or other en- 
vironmental detriments, have led to lighter-weight paperboards that perform as 
well as the heavier-weight paperboards they replaced. Consumers, motivated by 
economic benefits, increasingly supplement the fiberboard burst specification with 
their own specification based on edgewise compressive strength. The results of 
this analysis complement our earlier work (Johnson et al. 1979) and expand the 
knowledge on how to consider paper as an element in a sandwich structure. 

BASIC EQUATIONS 

We use the equation of equilibrium written in the form of Eq. (2.37) of Johnson 
and Urbanik (1984) for no surface load, q = 0. 
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Here, x and y are material Cartesian coordinates, N,, force resultants, M ,  moment 
resultants, and W the transverse displacement component. The moment curvature 
relations are given by Eq. (2.34) of Johnson and Urbanik (1984). 

a2w + HI2- + 
ay2 
d2W 

d2Wl 
+ H22- + H2,- 

dy2 dxdy 
d2W 

+ H23- 

""1 
dy2 

where H,, are the bending stiffness moduli, which are functions of the middle 
surface strains, and h is the plate thickness. 

For compression in the y-direction of the plate, the bending stiffness moduli 
are given by Eq. (4.9) of Johnson and Urbanik (1984). 

where constant c, which is related to an approximate shear modulus, is given by 
Eqs. (3.3) and (4.2) of Johnson and Urbanik (1984) as 

where v ,  is Poisson's ratio associated with x-direction compression and v2 with 
y-direction compression. 

PLATE BUCKLING 

The prebuckled plate is in uniform axial compression under the load conditions 

N2, = -No = -hcltanh(c2t/cl) 

Nl, = N12 = 0 (2.1) 
The middle surface strain field is homogeneous so the Hi, are independent of x 
and y. With HI,  = Hz, = 0 from Eq. (1.3), we substitute expressions (1.2) into 
(1.1) to obtain the equation for the buckling perturbation W. 
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We consider solutions of Eq. (2.2) of the form 

W = AOelAy +.ax 

Substituting Eq. (2.3) into (2.2) leads to a fourth degree equation for a@). The 
four roots are a ,  -a, ip, -i@ where 

Instead of Eq. (2.4) we shall use 

Superposing solutions of the form (2.3) one obtains solutions, even in x, of the 
form 

W = [alcosh ax + a2cos px]elAy (2.7) 

and solutions, odd in x, of the form 

We use the even solutions since they lead to lower buckling loads than the odd 
solutions. 

If a and p are substituted from Eqs. (2.5) and (2.6) into (2.7), and boundary 
conditions on edges x = k b  applied, we obtain a transcendental characteristic 
equation for the buckling strain as a function of the wave number A. The critical 
buckling strain for a long plate is obtained by minimizing the buckling strain with 
respect to A. Remember, the assumption made here is that the critical buckling 
modes are of form (2.7). There could be other buckling modes that lead to lower 
buckling strains, but they have not yet been investigated. 

We next want to write Eqs. (2.5) and (2.6) in dimensionless form. Eqs. (1.3) 
and ( 1.4) give 

where v is the geometric mean Poisson's ratio, 
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Stiffness ( S )  

FIG. 1. Plots of: as a function of S for three mean Poisson's ratios and two edge-support conditions. 
(ML85 5254) 

Introduce the dimensionless variables: 

& = ba, p = b@, i = c2t/c, 
x = bX(v21v,)'/' 
S = (~,lc,)(h/2b)~(v~lv~)"' 

Here, x is a dimensionless wave number and S a dimensionless stiffness coefficient. 
Substituting expressions (2.8) and dimensionless variables (2.10) into Eqs. (2.5) 
and (2.6) gives 

where 

Another form of Eq. (2.1 1) is obtained by solving it for i. 
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--- Simple support 

Stiffness ( S )  

FIG. 2. Plots of C? as a function of S for three mean Poisson's ratios and two edge-support conditions. 
(ML85 5255)  

SIMPLY SUPPORTED EDGES 

The boundary conditions for simple support are 

In solution (2.7), these boundary conditions lead to a ,  = 0 and 8 = 7r/2 for the 
lowest mode. Setting p = n-/2 in Eq. (2.13) you obtain the equation 

To determine the value of x that minimizes i, differentiate (3.2) with respect to 
x and set dildx = 0 to obtain 

Substituting x from (3.3) back in (3.2) yields an equation for the critical buckling 
strain, 
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Equation (3.4) is solved by fixed-point iteration where i is initialized according 
to the solution of the linearized theory, 

r2S 
Initial i = 

3(1 - v2) 

Knowing i, the dimensionless wave number x can be obtained from (3.3). Results 
of this calculation for normalized buckling strain and stress, assuming simple- 
support edge conditions, are shown in Figs. 1 and 2. 

FIXED EDGES 

The boundary conditions for fixed edges are 

In order for the solution of Eq. (2.7) to satisfy the conditions in Eq. (4.1) for 
nonzero a ,  and a,, we must have 

,8 tan 8 + & tanh & = 0 (4.2) 

The problem is to solve Eqs. (2.12), (2.13), and (4.2) for &(x), &x), and i(x) and 
then to minimize 2(x) with respect to X. To construct a convergent numerical 
procedure to accomplish this task we start by rearranging Eq. (4.2) to 

p = tanp1(-& tanh &/p) + r (4.3) 

The tan-' function returns the principal value in Eq. (4.3). The constant r is 
added so that the branch of the inverse tangent that corresponds to the lowest 
buckling load is used. Substituting & from Eq. (2.12) into Eq. (4.3) gives 

In principle, Eqs. (2.13) and (4.4) are to be solved for i and 8 as functions of 
x2 and then i minimized with respect to x2. As this procedure is difficult to 
implement, we modify it by adding an equation expressing the fact that dt/dx2 = 

0. The result is three equations for i, p and x, which are to be solved by an 
appropriate iteration procedure. 

Square both sides of Eq. (2.1 1) and differentiate with respect to x2 using 
di/ dx2 = 0. Combining the result with Eq. (2.11) you get 

where p' = dp/dx2. An equation for p' is obtained by differentiating Eq. (4.2). 

tanh &/& + l/cosh2& 

'' = - tan 8 + fi/cos2$ + (p/iu)tanh B + fi/cosh2& 

The result is three equations for i, 8, and X, (2.13), (4.4), (4.5) (with (2.12) and 
(4.6) used to calculate p'), which are solved by iteration as follows: 

1. Input stiffness parameter S and mean Poisson's ratio v. 
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Stiffness (S )  

FIG. 3. Ratio of fixed-edge buckling stress to simply-supported buckling stress as a function of S 
for three mean Poisson's ratios. (ML85 5256) 

2. Initialize i ,  X, and p as simple support values. 
3. Use Eq. (4.4) to improve p by fixed point iteration. 
4. Use Eq. (2.13) to improve i by fixed point iteration. 
5 .  Compute p' by Eqs. (2.12) and (4.6). Use Eq. (4.5) to improve X .  
6. If x has converged, output. If x has not converged, start at 3 again. 

Results of this calculation for normalized buckling strain and stress, assuming 
fixed-support edge conditions, are shown in Figs. 1 and 2. 

RESULTS 

On Figs. 1 and 2 are shown the normalized buckling strain and stress, respec- 
tively, as functions of the dimensionless stiffness S and mean Poisson's ratio v for 
the fixed-edge and simply-supported plate conditions. The normalized buckling 
stress, from Eq. (0.1), is given by 

The calculations illustrated on Fig. 2 assume that the material is elastic for all 
values of S. In practice, failure will also occur when 8 reaches its ultimate value 
c?, = au/c,, where a, is the ultimate compressive stress of the material. Hence, 
8, provides an upper bound for 8. When 8 < G,, failure occurs by elastic buckling 
according to Fig. 2. For paperboard, the data on a, and c, reported by Urbanik 
(1 98 1) indicate 3, - 0.9. Call S, the value of S corresponding to 8,. S, depends 
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Stiffness (S)  

FIG. 4. Ratio of nonlinear elastic buckling stress to linear elastic buckling stress as a function of 
S for three mean Poisson's ratios and two edge-support conditions. (ML85 5257) 

on v and whether the edges are fixed or simply supported. If S < S,, failure by 
elastic buckling will occur. If S > S,, failure by compression will occur when - n 

fJ = nu. 
from Fig. 2 we see that for 3 = 3, = 0.9, S = S, is in the interval 0.241 < S, < 

0.575. Stiffness of corrugated fiberboard components is on the order of 0.2 < S < 
0.5. Hence, for these components, the mechanism of failure depends on the nature 
of the edge restraint, which will lie between fixed and simple support, and the 
mean Poisson's ratio. 

In corrugated fiberboard the plate components have an edge restraint that lies 
between simple and fixed support. In Fig. 3 is shown the ratio of fixed-edge 
buckling stress to simple-supported buckling stress as a function of stiffness. Our 
theory predicts that as stiffness decreases the buckling strength becomes more 
sensitive to the restraint offered by adjoining components. 

The linear stress-strain law a = c,~,  or 3 = i, agrees with Eq. (0.1) for small 
strains. For a small strain f(?) = O(z2) so that Eq. (2.13), the linear buckling stress, 
is 

3, = CS 
where 
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- 5  1.0 1.5 2 . 0  2 . 5  3 . 0  3 .5  4 .0  4.5 

Wave number ( X I  
FIG. 5. Contours of function g(2, X) for the fixed edge plate with S = 0.3 and u = 0.35. The fixed 

point iteration proceeds from point P, to point P,. The contour Y,Y, is g = 0. The points along the 
path Z,Z, satisfy &/ax = 0. (ML85 5258) 
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Stiffness ( S )  
FIG. 6 .  Plots of p as a function of S for the fixed-edge case and three mean Poisson's ratios. The 

ordinate values are multiples of T.  (ML85 5259) 
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- ---Simple support 
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- 
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Stiffness ( S )  
FIG. 7. Plots of x as a function of S for three mean Poisson's ratios and two edge-support conditions. 

The ordinate values are multiples of n. (ML85 5260) 

For simple support 6 = ?r/2 and Eq. (3.3) gives x = ?r/2. Hence, in this case 

?r2 
C = 

3(1 - v2) 

which makes Eq. (5.2) agree with Eq. (3.5) as it should. For fixed edges, 6 and x 
are determined by the same iteration used for the nonlinear case, with i/S in Eq. 
(4.5) replaced by C which is calculated from (5.3). 

Figure 4 shows the ratio of nonlinear elastic buckling stress to linear elastic 
buckling stress given by (5.2). For values of S found in fiberboard components, 
note the importance of accounting for nonlinearity in the stress-strain relation. 

For the fixed edge plate, the steps in the fixed point iteration corresponding to 
plate properties S = 0.3 and u = 0.35 follow the path shown in Fig. 5. Point PI, 
with coordinates x = 1.78, i = 1.00, is the initial point corresponding to the simply 
supported plate. The iteration converges to point P, with coordinates x = 3.02, 
i = 1.48. 

Also shown on Fig. 5 are contour curves for functions g(?, X) equal to p (given 
by Eq. (4.4)) minus 6 (given by Eq. (2.11)). The contour Y,Y,  is g = 0 on which 
the solution P, lies at ? equal to the minimum. The contours attain a minimum 
with respect to x along curve Z,Z, where dg/dx = 0. Paths Y ,Y2 and Z,Z2 intersect 
at the solution P2. Below and to the right of R,R, is a region where g is complex. 
Above and to the left of RlR2 g is real. 
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Root 6 for the fixed edge plate is shown in Fig. 6. Recall that p = 7r/2 for the 
simply supported plate. Normalized wave number x is shown on Fig. 7. 

Finally, we note that the relevant dimensionless material constants are the 
stiffness S and mean Poisson's ratio v. Because S, as given by Eq. (2. lo), contains 
the term for plate thickness, h, we can presumably measure h. In this respect, the 
effective-thickness concept proposed by Setterholm (1974) and examined by RO- 
senthal (1977), based on combining tensile and bending data measured indepen- 
dently, seems applicable. 

CONCLUSIONS 

The facings and flutes of corrugated fiberboard are flexible enough to buckle 
locally under edgewise compression. The flutes retard adhesive-line rotation, stiff- 
ening the facings' edges and strengthening the entire board structure. Low stiffness 
facings gain or lose strength the most from a change in flute stiffness. Variations 
in flute material will cause a corresponding variance in fiberboard edgewise com- 
pressive strength. That strength variation will likely increase as the facings absorb 
moisture and become less stiff and therefore more sensitive to the flutes. This 
explains one difficulty with predicting the stacking life of corrugated containers 
under humid conditions. The converse situation of the facings stabilizing the 
flutes also arises. 

Use of nonlinear load-deformation response of paperboards leads to predictions 
of lower buckling loads than does use of linear material response, and becomes 
more significant with stiff components. Material nonlinearity needs to be ac- 
counted for in fiberboard strength formulas, especially when the components vary 
in stiffness. Fiberboard strength may correlate with its components' compressive 
strengths by virtue of a fortuitous correlation between paperboard strength and 
stiffness. But if developed around a narrow range of stiffnesses, those formulas 
that ignore material nonlinearity are likely to fail upon extrapolation to encompass 
many paperboard grades varying in stiffness. 

Our analysis of a thin plate considers two cases of edge restraint. Numerical 
procedures are given for solving the buckling equations that arise from solving 
the equilibrium conditions and boundary conditions. A graph of the iteration 
shows how convergence occurs in the case of fixed edges. 
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