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ABSTRACT 

Load-carrying efficiency is defined here on the basis of load-carrying capacity of a composite board 
per unit weight. Relationships are derived for evaluating the load-carrying efficiency for tension, 
compression, shear, and bending applications. As an illustration of the application of the theory, 
limited experimental data are provided for both particleboard and fiberboard to illustrate that optimum 
load-carrying efficiency does not necessarily occur at the highest density at which these composites 
can be manufactured. Further, it is shown that optimum load-carrying efficiency varies for different 
products and load types. These optimum points may not occur at the highest strength and stiffness 
values attainable for these products. 

K r y ~ ~ , o r d . \ :  Pseirdotslrgcc mc~trzirsii, particleboard, fiberboard, composition board, strength, stiffness, 
modulus of elasticity, specific gravity, compression strength, models. 

INTRODUCTION 

Composite boards encompassing such products as flakeboard, chipboard, and 
fiberboard are used more and more in products where the load-carrying capacity 
of the product is of primary importance. More and more of these products are 
"engineered" for load-carrying functions and the strength properties of these 
products need to be known. Structural applications are becoming more frequent 
for these materials as witnessed by current research activities to develop a struc- 
tural composite board. 

One advantage of composite boards over solid sawn wood is that they can be 
engineered to meet certain strength and stiffness requirements. Manufacturing 
activities should be conducted with optimum efficiencies keeping in mind not 
only the minimization of production cost but also the optimization of the cost it 
takes to produce a product that has the highest load-carrying capacity per unit 
cost. This paper deals with a technique by which optimum material efficiency for 
such a purpose can be determined. 

REVIEW OF LITERATURE 

Since the inception of wood composite boards, manufacturers have been in- 
terested in improving the various mechanical properties of these products. Ac- 
tivities have concentrated on the effect of such variables as species (Hse et al. 
1975; Nelson 1973), particle geometry (Brumbaugh 1960; Plath 1971 ; Post 1961), 
and manufacturing variables (Hse et al. 1975; Strickler 1959; Suchsland and 
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FIG. I. Specific load-carrying capacity conditions for axial loading 

Woodson 1976). With the increased cost of adhesives, resin efficiency in com- 
posite boards became the major target of research (Lehman 1970; Lehman and 
Hefty 1973; Maloney 1970). While resin content, due to its relatively high cost, 
is often optimized for a given product, the same cannot be said about the wood 
component. Innovations in product modification by polymer impregnation (Beall 
et al. 1973, particle orientation (Talbott 1974; Talbott and Stefanakos 1972) or 
layering (Bryan 1962; Maloney 1970; Plath 197 1 ; Plath and Schnitzler 1974; Wood- 
son 1976) all can contribute to an improved and more efficient composite product. 

Generally, the specific gravity of a given board type is considered the most 
reliable indicator of the mechanical properties of these products (Hofstrand 1958; 
Plath and Schnitzler 1974; Woodson 1976; Woodson 1977). Modeling of compo- 
nents (Brown 1975; Bryan 1962; Hunt and Suddarth 1974; Jayne 1972; Plath 1971; 
Plath and Schnitzler 1974) greatly enhanced the understanding of the factors 
controlling the mechanical properties of composite boards. 

Applications of wood composite boards in engineered structures are increasing 
steadily. Work to develop design stresses (McNatt 1970; Pearson 1977) is evident 
as are design considerations for various applications (Lundgren 1957; Superfesky 
and Ramaker 1976). With the availability of modern structural analysis techniques 
to model floor, roof (Goodman et al. 1974), and wall (Polensek and Atherton 
1976) sections of light frame residential structures, designing with composite 
boards can be easily incorporated, provided that the proper material and con- 
nector parameters are established. Information on such properties as axial and 
bending strength and stiffness, connector slip behavior, and gap characteristics 
at the edges of boards and their variability is needed. 

SPECIFIC LOAD-CARRYING CAPACITY 

Specific load-carrying capacity is defined as the amount of load a unit weight 
of material can carry under a given set of conditions. The higher the specific load- 
carrying capacity, the more efficient the material is for structural applications. 
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Derivation of the relationship for the specific load-carrying capacity is straight- 
forward. First, visualize an axial loading case as illustrated in Fig. 1. Consider 
four rods (or any other number) of different products with different specific grav- 
ities but all having a unit weight, W, length, L, and width, b. The height of these 
rods, h,, has to vary inversely with specific gravity to maintain equal weights. 

Considering the defined geometries, the height of a rod has to be inversely 
proportional to its specific gravity, i.e.: 

The ultimate load-carrying capacity, Pui, is equal to the ultimate axial stress, 
trUi, times the corresponding cross-sectional area, A,; thus, 

p . =  trUiAi = trUi bhi . PI 
Since for comparative purpose the width in [2] is chosen to be unity, after 
simplification and substitution of [ I ]  into [2], 

P", = cruiiSi . [31 

Thus, the specific load-carrying capacity for an axially loaded rod with uniaxial 
strength limitation is the ratio of the ultimate axial stress over the specific gravity 
of the material. This relationship applies for axial tension and compression as 
long as no buckling takes place for the latter. 

Because of the similar relationship for the case when the shear force is acting 
in the cross-sectional area, 

p . =  ul  ~ui is i  , [dl 

where: 
T , ~  = ultimate shear stress of the i-th density material in the cross-sectional 

plane. 

In many applications the axial deformation rather than the ultimate load is 
of significance. Elastic axial deformation is governed by Hooke's law: 

AEA 
P, = -- 

L '  

where: 
P, = axial load corresponding to a given deformation, 9 
A = axial deformation 
E = modulus of elasticity in axial stress 
A = cross section 
L = length. 

For the axial load (Fig. I )  with L = 1 and b = 1, [5 ]  becomes 

P,, = b,E,h,. L61 

It is possible to compare material efficiency at any level of elastic deformation. 
Thus, for convenience we may choose A = 1. Consideration of equality in [6], 
and substitution of [ I ]  results in 

pa, = E,IS,. [71 

For shear consideration with similar assumptions as for axial deformation El 
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FIG. 2. Specific load-carrying capacity conditions for bending 

is replaced by the appropriate modulus of rigidity, G,,  producing 

PAi = GilSi. 181 

Thus, [3] and [7] can be used to  evaluate the specific load-carrying capacity in 
axial loading and [4] and [8] for shear. 

Specific load-carrying capacity in bending (Fig. 2) requires the derivation of 
different sets of relationships. Using the previously assumed geometry-specific 
gravity relationships, the ultimate load-carrying capacity can be obtained from 
the ultimate moment-carrying capacity, Mu,: 

Mu, = (MOR),Iil(hi12), P I  
where: 

(MOR), = modulus of rupture 
Ii  = moment of inertia = bhiZ3/12. 

However, 

where: 
K, = constant for condition j, with its numerical value varying for different 

loading conditions and material properties. 
Equating the MUi relationships with unit length and unit width and using the 1, 
expression, the ultimate load-carrying capacity is expressed as: 

Pui = Kj(MOR),hi2. [ I l l  
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Finally, utilizing [ l ]  

P,, = Kj(MOR),/Si2. 

The ultimate specific load-carrying capacity of a material in bending is again a 
function of the ultimate stress and specific gravity. However, here the square 
of the specific gravity is required. 

For a bending member limited by its elastic deflection, A , ,  the well-known 
maximum deflection expression can be used to obtain the ultimate load-carrying 
capacity: 

where: 

Ai = elastic deflection corresponding to P,i 
(MOE), = modulus of elasticity in bending. 

Again, considering [ l ]  and unit length, width and deflection, [13] simplifies to 

Pgi = Kj(MOE)JS?. [I41 

Therefore, the specific load-carrying capacity of a bending member based on 
elastic deflection is a function of its bending modulus of elasticity and the cube 
of its specific gravity. 

GENERALIZED RELATIONSHIPS 

The previously desired relationships were obtained through the development 
of specific examples. These relationships can be generalized for wider applica- 
bility. From [3], [4] and [12], it can be seen that the specific load-carrying 
capacity for load limitations is a function, F, of stress, a, (either normal or 
shear) and specific gravity, S, 

P,, = KjF(a, S). [I51 

Similarly, from [7], [8] and [14] the specific load-carrying capacity when a 
deformation limit is imposed is 

P,, = K,G(C, s), [I61 

where: 
C = compliance parameter corresponding to a specific deformation con- 

dition. 
Since it was demonstrated earlier in the derived relationships that specific 

gravity appears as a divisor with a certain exponent, [15] and [16] respectively 
can be further refined to the form: 

P,, = K~s-"F(x), [171 

where: 
x = appropriate stress or compliance parameter. 

It has been demonstrated frequently in the literature and also illustrated in 
Figs. 3 through 6 that the various ultimate stress and compliance parameter 
values are functions of the specific gravity of the material they represent. 
Therefore, [17] can be written to represent the relationship: 
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SPECIFIC GRAVITY 
FIG. 3 .  Relationship between property ratio and specific gravity of particleboard in compression. 

4.0 

3.5 

3.0 

2 . 5 -  
k a 
K 

* 2 . 0 -  
k 
K 
W 
a e 1.5 
a 

1.0 

P,, = KjSpnf(S), [I81 

where the function of material property f(S) has to be determined from mea- 
surements and can be a linear or exponential function. 

The most efficient material utilization is obtained when Pui is maximum. This 
maximum can be obtained by differentiating [18] with respect to specific gravity 
and equating the result to zero. 
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COMPOSITE BOARD EXAMPLES 

a 

The principles previously presented are independent of the material used. Thus, 
only a limited experimental design was carried out to illustrate the applicability 
of these principles to manufacturers of composite products. Four panels of a 

a 
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FIBERBOARD 

- COMPRESSION 

SPECIFIC GRAVITY 
FIG. 4.  Relationship between property ratio and specific gravity of fiberboard in compression. 

laboratory type particleboard were manufactured for the demonstration. Obvious- 
ly a manufacturer wishing to evaluate his commercial product would carry out 
a much more extensive experimental design. A single batch of furnish of lodgepole 
pine planer shavings was sprayed with urea-formaldehyde resin (6% solid 
glueloven-dry wood). From this sprayed furnish, four portions of equal weight 
were taken to form single 2- by 2-foot panels. The pressing schedule used was 
sufficiently long as determined by thermal conductivity computations and the 
adhesive manufacturer's recommendations to insure curing of the resin through- 
out the panel. The only difference between panels was the pressing pressure 
employed and the longer time needed in the press for curing the thicker panels. 

Thus, from equal weights of furnish, different board thicknesses and specific 
gravities were produced (Table 1 ) .  A similar procedure was used to produce 
fiberboards (from commercial furnish Douglas-fir fibers using again 6% urea-form- 
aldehyde resin) of different thicknesses and specific gravities as shown in Table 
1 .  The purpose of this approach was to demonstrate that the same amount and 
quality of furnish can produce different specific load-carrying capacities. 

From each panel, conditioned to approximately 12% moisture content, two 
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TABLC I .  Sp~(,ififi(.  load-c.crrrying c,upac.ity data 
- 

Compression Bending 

h S (Tu wu/S E EIS  MOR MOWSL MOE MOEIS" 
Panel (in.) - ( P F ~ )  ( I l l +  psi) (psi) (IF psi) 

Particleboard 

0.0540 0.129 
0.0658 0.137 
0.1629 0.257 
0.2298 0.275 

Fiberboard 

0.1840 0.454 
0.2532 0.533 
0.3772 0.609 
0.4917 0.579 

bending and four compression samples were tested according to ASTM Desig- 
nation D- 1037, ( 1972). Compression specimens were glued together to produce 
square cross sections. Test results and specific gravity values were utilized to 
compute the specific load-carrying capacity values as previously defined in [3], 
171, [12] and [I41 (Table 1). 

A relative change in the specific load-carrying capacity is easier to evaluate 
than the actual number. Thus, particleboard and fiberboard panels "A" were 
designated as reference values. Computed ratios are tabulated in Table 2. Higher 
ratios indicate better specific load-carrying capacity than that of panel "A"; the 
reverse is true for lower ratios. 

In compression, both particleboard and fiberboard panels exhibited rapid in- 
creases for ultimate stress and modulus of elasticity property ratios with increas- 
ing specific gravity (Figs. 3 ,  4). One would conclude from these property ratios 
that panels should be produced with specific gravities above 0.8. However, the 
particleboard specific load-carrying capacity ratios for ultimate stress, v,/S, and 
axial deformation E/S reach maximum values at 0.76 and 0.78 specific gravity, 
respectively. These maximum values are found at 0.70 specific gravity for fiber- 

TABLE 2. Property ratio for spec$c loud-carrying capacity. 

Comprewion Bending 

Panel (TU ,r,lS E EIS MOR MOWS' MOE MOEIS.' 

Particleboard 

1.000 1.000 
1.063 1.419 
1.988 2.572 
2.130 3.180 

Fiberboard 

1.000 1.000 
1.174 1.547 
1.341 3.049 
1.275 5.678 
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3.5 t PARTICLEBOARD 

SPECIFIC GRAVITY 
FIG. 5 .  Relationship between property ratio and specific gravity o f  particleboard in bending. 
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board (Fig. 4). Thus, pressing the above laboratory type particleboard to ap- 
proximately 0.77 and fiberboard to 0.70 specific gravities produces the highest 
load-carrying efficiencies. 

MOR and MOE ratios also increase rapidly with increasing specific gravities 
for both particleboard (Fig. 5 )  and fiberboard (Fig. 6). These figures reveal opti- 
mum specific gravities for ultimate bending load, MOR/Si2 of 0.58 and 0.69 for 
particleboard and fiberboard, respectively. 

No maximum ratio can be found for ultimate load if deflection governs the 
design, MOEIS:' (Figs. 5, 6). In this case it appears that the optimum specific 
gravity values are lower than those for panel A,  indicating that the laboratory 
type composite boards should be pressed to relatively low specific gravities and 
larger thicknesses if the designs of bending members are governed by deflection. 
However, for each specific application all three properties-normal stress, shear 
stress and deformation-have to be evaluated separately to determine the gov- 
erning property. 
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C FIBERBOARD 
6 

BENDING /::: 

SPECIFIC GRAVITY 
FIG.  6. Relationship between property ratio and specific gravity of fiberboard in bending. 

In addition to the graphical solution, which is somewhat less accurate, the 
numerical technique can be used to evaluate the optimum density of the product 
for a given end use requirement. Thus, the use of [19] is illustrated here by the 
obtained numerical data. For example, the MOR-specific gravity relationship for 
fiberboard (Fig. 6) can be approximated by a linear relationship: 

f(S) = MOR = -3,073.9 + 9,306.0s. 

Further, for MOR n = 2 as given in [12]. While the mode of bending is imma- 
terial to the solution, let us assume that the panel is loaded in simple span bending 
with a concentrated load at midspan. For this case Kj = %. Substitution into 
[19] results in 

After differentiation and simplification, this becomes 

6,147 - 9,306s = 0, 

resulting in an optimum specific gravity value of S = 0.66. This is compared to 
the value obtained by graphical solution (Fig. 6) of 0.69. The difference is easily 
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explained by the somewhat curvilinear nature of the MOR-S relationship and the 
lower accuracy of the graphical solution. 

DISCUSSION A N D  SUMMARY 

The derived relationships for specific load-carrying capacity are general in na- 
ture and applicable to any homogeneous material or loading condition. Examples 
were given for particleboard and fiberboard loaded in compression and bending. 
The derived optimum specific gravities are applicable only to the specific Iabo- 
ratory panels investigated. They serve only as illustrative examples showing that 
optimum load-carrying efficiency does not necessarily occur at the highest spe- 
cific gravity at which a product can be manufactured. Each commercial product 
should be studied separately and in more detail to evaluate its own optimum 
specific gravity. 

It should be easy to see that optimum load-carrying capacity may not be at- 
tained for every product. Other factors, such as surface hardness, connector 
holding capacity, and finishing requirements, for example, may alter selection of 
the optimum specific gravity. These judgments have to be made in light of other 
end-use requirements of the products. Nevertheless, it would be to the benefit of 
each producer to evaluate the optimum specific gravity of his products for the 
most efficient load-carrying capacity and then assess the alterations which are 
feasible for other requirements. 
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