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ABSTRACT 

Transient temperature profiles of frozen logs subjected to axisymmetric thawing and heating were 
calculated bv a temoerature method and an enthalov method. The oresent oaoer discusses onlv the . . . . 
temperature method, which uses the conventional (temperature) fornulation of the nonlinear heat 
conduction equation. This approach required the specification of a thawing temperature interval over 
which the latent heat was incorporated in the specific heat. Thermal properties were varied with 
position and temperature, and changed discontinuously with the phase. The log surface temperature 
was specified. The computerized finite-difference program HEAT was used in conjunction with this 
method. Computed temperature profiles were in overall agreement with experimental data obtained 
from heating logs in agitated water. 

Keywords: Heat transfer computer program, thawing model, phase change, nonlinear heat conduc- 
tion. 

INTRODUCTON 

Computing transient heat conduction with thawing is important in a number 
of wood processing operations. As an example, northern veneer and flakeboard 
mill operators request estimates of log thawing times for wood frozen during the 
winter months. The additional time required for raising veneer block temperatures 
to the levels recommended for veneer cutting must also be computed, as tem- 
perature measurements inside the logs are not feasible from an economic stand- 
point. 

Transient temperature profiles were calculated for frozen logs subjected to axi- 
symmetric thawing and heating. The two computational methods found suitable 
were a temperature method after Bonacina et al. (1973) and an enthalpy method 
derived from Voller and Cross (1981). The temperature method uses the con- 
ventional (temperature) formulation of the nonlinear heat conduction equation, 
with temperature as the only dependent variable. In the enthalpy method, the 
dependent variables are enthalpy and temperature. This paper discusses the tem- 
perature method. 

The method was used in conjunction with the computer program HEAT, which 
was prepared by Beckman (1972) in FORTRAN V language, for use on a UNIVAC 
1108 computer. HEAT uses a finite-difference technique with predictor-corrector 
integrations (Hamming 1962) and can solve multidimensional heat conduction 
problems with various boundary and initial conditions. Thermal property data 
may vary with position and time or temperature. These data may also be dis- 
continuous, which is important for phase change calculations. 

Computations have been compared with data from experiments in which logs 
were thawed and heated in agitated water (Steinhagen 1977a). A more explicit 
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FIG. 1. Log transient with imponant energy terms. 

description of the computational procedure is given in Steinhagen (1978), from 
which this paper was abstracted. 

THEORY 

Consider a long, cylindrical log with radius re (Fig. 1). The length of the log 
allows one to ignore any heating end effects; practically, this requires a length-to- 
diameter ratio in excess of four, according to data published by MacLean (1946). 
The log's initial temperature (To) is below 0 C, the freezing point of free water. 
At time zero, the log's surface is exposed to the heating bath temperature (T,) so 
that the surface temperature (T,) is immediately raised to the level of the bath 
temperature, involving surface thawing. The question, then, is how much log 
heating time (t) is required to reach the temperature (T) at the radial depth (r) 
along the log's center cross section. 

Note that the concept of two phases simultaneously existing during thawing is 
eliminated from consideration, given the assumption that the log's thermal con- 
ductivity (k), specific heat (c), and density ( p )  are functions of position and tem- 
perature and will discontinuously change with the phase. The latent heat is in- 
corporated in the specific heat over a finite thawing temperature interval (concept 
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FIG. 2. Control systems with finite-difference terms 

of "equivalent specific heat," Bonacina et al. 1973). In this way, the thawing 
problem becomes equivalent to a problem of nonlinear heat conduction without 
phase change. 

An energy balance on a control system (Fig. 1, broken lines) gives 

where q 1, is the rate of heat flow at position r, q I ,+,, is the rate of heat flow at 
position r + Ar, and E is the rate of energy storage. Substituting the conventional 
rate equations into the energy balance yields 

where A is the area through which heat flows, and V is the volume. Further 
development will yield the nonlinear equation for axisymmetric heat conduction: 

This equation cannot be solved because of the assumed temperature dependence 
of k, p, and c. However, an approximate solution is available via the finite- 
difference approach described below. 

FINITE-DIFFERENCE APPROACH 

A number of equidistant nodes are devised along the log radius (Fig. 2). Each 
node is successively considered the focal node i; nodes j l ,  j2 are the adjacent 
nodes. The heat flow from j into i is qji (=-q,), and the energy stored in the 
system surrounding node i is E,. One may then write an energy balance on each 
system and substitute the rate equations into the energy balances. The negative 
expression of the derivative in the conduction rate equations, -aT/ar, is approx- 
imated by the difference notation AT/Ar, for which one may write (Ti - Ti)/dj,, 
where d,, is the distance between j and i. This leads to a set of solvable equations 
analogous to Eq. (2): 
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FIG. 3. Typical profile of C;, over temperature. 

dT, 4iAjii ,,,V.c. - = - kj2iAj2i (T,, - Ti) + - 
' d t  djii 

(Tj2 - Ti) 
dj2i 

Equation (4) may be rewritten as 
d ~ ,  A-jn 

pYfi - = 2 C..(T JI J - T,) dt j, 

where Cji is the conductance (kjiAj,/dji), and n is the number of nodes immediately 
surrounding focal node i (i.e., 2 in our one-dimensional system, and 4, 6 in two- 
and three-dimensional systems, respectively). Equation (5) is of the type that 
HEAT (Beckman 1972) will solve simultaneously for all nodes in a multidimen- 
sional system. 

As HEAT allows only the conductance (C,,) but not the capacitance (piVici) to 
be temperature-dependent, one must circumvent this shortcoming via dividing 
both sides of Eq. (5) by p,Vici, which yields 

.- ,=in 

where C,: is the conductance per unit capacitance (kj,Aji/dji)/(piVic,). 
The quantity C,;, in addition to the initial temperature (To) and surface tem- 

perature (T.), is computer input data and must be evaluated for the temperature 
points shown in Fig. 3 by the dots. The thawing temperature interval (AT,) shown 
in Fig. 3 is a computational parameter that must be adjusted so that agreement 
is obtained with experimental results. This thawing interval may or may not be 
fictitious. Within the thawing interval, the effective specific heat of a node (c,) is 

Li c. = c. + - 
' ""T, 



464 WOOD AND FIBER SCIENCE. JULY 1986. V. 18(3) 

Tnem 1. Thermalproperties oflog No. 10. 

lnclvdcl latent heat. 
'Surfam node. 

where c,,, is the true specific heat at the thawing temperature, and Li is the latent 
heat. For wood, we have 

where L, is the latent heat of water fusion (334,000 J/kg), and MC, is the node's 
moisture content expressed in percent of the dry mass of wood. This concept 
considers only the free water (MC, > 30%) as frozen, the bound water phase 
change being negligible (Kubler 1962). 

TABLE 2. Computer input data C,:, in seconds-', for log No. 10. 

j 12c - 1 . 5 - c  I . ~ ( + ) c  1 .5 ( - )C 1 . 5 ( + ) c  54 c 

2 Ib  - - - - - - 
I 2 0.0018 0.0016 0.000075 0.000054 0.00088 0.00098 
3 2 0.0016 0.0014 0.000064 0.000048 0.00077 0.00086 
2 3 0.0018 0.0015 0.000082 0.000062 0.00089 0.00099 

etc. etc. etc. etc. etc. etc. etc. etc. 

19 18 0.0010 0.0009 0.000034 0.000023 0.00043 0.00048 
18 19 0.0064 0.0057 0.000200 0.000140 0.00270 0.00310 

Include8 l a t ~ n t  heal. 
Surface node I - I with rpcifird ternpraturc T. - 54 C needs no C;, vvalvo specification. 
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HEATING TIME ( h l  
FIG. 4. Transient temperature profile of log No. 10. 

COMPUTATIONS 

Transient temperature profiles were computed for four logs identified in the 
above-mentioned experimental paper (Steinhagen 1977a) as Nos. 1 (aspen), 4 
(black cherry), 7 (red oak), and 10 (eastern white pine). In accordance with the 
known log specifications, thermal conductive properties as a function of temper- 
ature, moisture content, and specific gravity were determined from the literature 
(Steinhagen 1977b). The thermal property values of log No. 10 are given in Table 
1, for 19 nodes and an assumed thawing interval of 3 degrees (- 1.5 to 1.5 C),  
with To = -22 C and T, = 54 C. These values were used to prepare the data of 
C;, (Table 2). These data were submitted to the computer in tabulated form (the 
format is given in the user manual for program HEAT, Beckman 1972). HEAT 
performed linear interpolation of the table values. As the smallest value of the 
Euler stability limit criterion (I/? C,:) was 1/0.0064 seconds (Table 2) which must 

J 

not he exceeded by the integration time step, a value of 0.040 hours was chosen 
as a time step in the computations for log No. 10. Note that the computer input 
for capacitance had to be unity, due to the transformation of Eq. (5) into Eq. (6). 
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RESULTS AND DISCUSSION 

The transient temperature profile of log No. 10 is given in Fig. 4. The solid 
lines were established in the earlier experiments (Steinhagen 1977a). The symbols 
represent the comparable computed data. 

For a given position and temperature, the discrepancy between measured and 
computed time was usually within the 10% target, for all four logs studied in the 
project. The computational error seemed to increase when the latent heat entered 
the calculations. This is apparently due to the discontinuity and use of a fictitious 
thawing temperature interval to accommodate the latent heat effect. From a prac- 
tical point of view, it appears, however, that the method has provided acceptable 
temperature-time solutions to the problem of axisymmetric thawing and heating 
of logs with position- and temperature-dependent thermal properties. 

Increasing the number of nodes had no significant effect on the quality of results. 
Oscillations among the computed values were not observed in these computations. 

Calculations with constant, though distinct, thermal properties in each phase 
were considerably less cumbersome to prepare than with variable properties. The 
resulting error was usually again within target. 

Solutions have been generalized into charts (Steinhagen et al. 1980) covering a 
large range of values that the nondimensionalized parameters can assume. 

CONCLUSIONS 

Utilization of the temperature method in conjunction with computer program 
HEAT has provided temperature-time solutions to axisymmetric log thawing and 
heating eases. 

The agreement between calculated and measured temperature profiles appears 
satisfactory. 

Specification ofa thawing temperature interval for wood appears to be a problem 
with this method. 
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