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ABSTRACT 

An equation for predicting the strength of wood beams with end notches on the tension side (Tension- 
side End Notches or TEN) was derived using a critical fillet hoop stress (CFHS) theory. The equation 
combines the results of finite element and statistical analyses of 690 different TEN beam configurations 
and experimental tests of 362 full-size beams. It accounts for the effects of loading type, end support 
and beam and notch geometry variables such as beam height, fractional notch depth, radius, and notch 
location. The effect of span-to-depth ratio is implicit to the model. Notched beam strength is repre- 
sented by a material parameter, K ,  which can be obtained from notched beam tests. The equation is 
applicable to both filleted and sharp-comered notches. An effective radius, Re, which models the effect 
of a sharp-cornered notch, was determined and confirmed for two wood materials. A method of 
determining R, for other materials was established. The results of this study can be used to set new 
design criteria for the strength of notched wood beams. 

Keywords: Beam strength, notch, wood beam, wood design, end effects. 

INTRODUCTION 

Wood beams are notched in construction to 
bring top surfaces of floors and roofs to desired 
levels, or to provide necessary clearance or fit 
to support or framing conditions. Notching the 
ends of a wood beam on the tension face se- 
verely reduces beam strength beyond that due 
to a reduction in net section because of stress 
concentration at the notch root. Researchers 
such as Murphy (1 978), Gustafsson (1 988), 
Walsh (1 972), and Leicester and Poynter (1 979) 
have characterized this as a fracture phenom- 
enon and provide limited prediction equa- 
tions. Most building codes, standards, and de- 
sign guides recommend avoiding notches 
(USDA 1987; NFPA 1986; AITC 1985; Met- 
tem 1986; CSA 1989). Current U.S. design 

practice is based on unpublished empirical 
work by Scholten (1 935) and does not behav- 
iorally conform with the research results men- 
tioned above. Foliente and McLain (199 1) 
demonstrated that U.S. design recommenda- 
tions are nonconservative for some notch ge- 
ometries. 

The stresses at a notch root in an orthotropic 
wood beam are complex, and the combination 
of stresses that initiates failure or crack prop- 
agation is unknown. Gerhardt (1984a, b) suc- 
cessfully modeled the stresses at the filleted 
notch of oak pallet stringers using a hybrid 
finite element (FE) model. He found that fail- 
ure was initiated when the maximum hoop 
stress at the notch fillet reached a critical value 
(referred to here as the critical fillet hoop stress 
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Line of symmetry 

9 

Abou-Ghaida and Gopu (1984), however, 
found that Eq. (1) seriously underestimates the 
hoop stress at end notches on the tension face 
ofa beam cension-side End Notches or TEN). 
We hypothesize that ~Frhardt 's  and Zalph's 
work was influenced by the dominant moment 
term in Eq. (I), whereas for TEN beams the 
shear term is more critical. 

The objectives of this research were to (a) 
develop a closed-form prediction equation for 
the maximum hoop stress in a TEN wood beam 

Fractional notch depth. 4 = f considering notch, beam, loading, and mate- 
L. = + for center-point loading rial variables, and (b) experimentally assess the 

FIG. 1. FE model of wood beam with TEN. validity of the CFHS theory to model failure 
in TEN wood beams, including those with 

or CFHS theory). Fillet hoop stress, a,,@, is the 
"non-zero principal stress acting on the free 
surface of a filleted notch corner at an angle 8 
from the horizontal" (Zalph 1989), as shown 
in Fig. 1. Gerhardt (1984a) found that maxi- 
mum hoop stress could be predicted by 

where 

maximum hoop stress at critical 
notch root, 
resultant bending moment and shear, 
respectively, at the critical notch 
root, 
beam width and beam height, re- 
spectively 
moment term apparent stress con- 
centration factor, 
shear term apparent stress concen- 
tration factor. 

Abou-Ghaida and Gopu (1984) confirmed 
Gerhardt's work for tension-side interior 
notches and supported the CFHS theory. Zalph 
(1989) and Zalph and McLain (1992) tested 
the general applicability of the theory for a 
wide range of tension notch and beam geom- 
etries with an extensive analytical and exper- 
imental study. They developed a closed-form 
equation that predicts the flexure strength of 
these notched beams. 

sharp notches. 
If CFHS theory is sufficiently accurate, then 

it may be used to develop new design criteria 
for the strength of end-notched beams. De- 
signers and engineers are currently left without 
adequate guidance when designing TEN wood 
beams. 

CLOSED-FORM EQUATIONS 

Finite element model 

An end-notched wood beam, Fig. 1, is char- 
acterized by its span (L), beam width (b) and 
depth (h), notch depth (D), fractional notch 
depth or ratio D/h ($), fillet radius (R), notch 
length (L,), loading condition (M/V), and elas- 
tic parameters. Gerhardt's (1983, 1984a, b) FE 
program was used to model beams with dif- 
ferent combinations of these parameters. Cu- 
bic isoparametric quadrilateral plane elements 
were used except at the notch root, which was 
modeled with a planar hybrid fillet element. 
Note the exploitation of symmetry in Fig. 1. 
Characteristic details of these elements were 
published by Gerhardt (1 983, 1984a, b). The 
following were assumed: (a) plane stress load- 
ing, (b) orthotropic linear elastic material, with 
(c) principal material axes aligned with beam 
axes (i.e., no slope-of-grain). 

All analyses were run on an IBM 3090 main- 
frame computer. A single output file-con- 
taining the hoop stresses, u, ,~ ,  given at lo  in- 
crements from 0' to 90' with respect to the 
horizontal axis, the maximum hoop stress, 
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ah,max, its angle of occurrence, 8,,,, the maxi- TABLE 1 .  Elastic property (EP) sets considered in the FE 
mum displacement and its node location- was analysis of TEN wood beams. Poisson's ratio was constant 

received from the program. at 0.40. 

Orthotropy ratlos 
Derivation 

E" - Ex - E, - E. 
( X  lo0 

Analysis. -It is hypothesized that a crack-ini- EP Deslgnatlon Gxy E, G,, PSI) 

tiated mode of failure in a TEN wood beam A G i i - E I ~  11 13 0.846 1.3 
results when the maximum hoop stress at the 
notch root exceeds a critical level. Equation 
(1) may be normalized and rearranged to yield 

where 

ShCF = normalized hoop stress or 
"Shear - - Concentration - Factor," 

M 
- - 
v - ratio of applied moment to applied 

shear at the notch root location. 

The moment and shear functions, f, and f2, 
will contain terms related to some or all of the 
following: L, h, D, 4, R, L,, M/V and material 
properties. 

For orthotropic wood (where E is Young's 
moduli, G is shear moduli, x corresponds to 
the longitudinal axis and y to a transverse axis- 
radial and tangential properties assumed equal), 
the ratios E,/E, and Ex/Gx, influence beam dis- 
placements and stresses and specifically, max- 
imum hoop stress a,,,,, using Gerhardt's 
(1984a) model. For the present study, the elas- 
tic property sets shown in Table 1 were chosen 
to model a wide range of wood species. Pois- 
son's ratio, v,,, was set constant at 0.40 as Ger- 
hardt (1984a) found that v,, had a negligible 
influence on calculated stresses and displace- 
ments. 

Beam geometry in the FE analysis was de- 
scribed by variable h, a fixed L and a unit 
width. Notch geometry variables were R and 
4 (or ratio D/H). Notch length, L,, identifies 
the location of the notch root relative to the 
support. For center-point loading, L, is also 
equal to the ratio of M/V at the notch root. 

This loading type was selected for conve- 
nience. 

A full factorial numerical analysis was per- 
formed using the variables shown below: 

variable levels 

h (in.) 3.50, 4.71, 7.125, 10.75 
4 0.10, 0.35, 0.52, 0.60 
R (in.) 0.1875, 0.344, 0.50 
M/V (in.) 1.0, 6.5, 12.0 
material A, B, C, D, E (see Table 1) 

The ranges of geometry variables were chosen 
based on preliminary studies and practicality. 
Beam span was 42 in. and total beam length, 
48 in. With each elastic property (EP) set, six 
geometric cases were not analyzed because R 
> D. Consequently, a total of 138 ShCF values 
per EP set and a grand total of 690 different 
notched beams were analyzed numerically. Al- 
though the study did not include span-to-depth, 
L/h, as an explicit variable, it covered cases 
where L/h ranged from 3.9 1 to 12.00. 

Equation (2) is linear with an intercept of f2 
and a slope of (l/h)f,, where f2 = f2(EP set, 4, 
R, h) and f, = fl(EP set, 4, R, h). Linear re- 
gressions with FE-derived ShCF and notch lo- 
cation M/V as dependent and independent 
variables, respectively, were made for all com- 
binations of 4, R, and h for each EP set. This 
resulted in 46 values o f f ,  and f2 for each EP 
set. The results showed high linearity with co- 
efficients of determination (r2) values generally 
exceeding 0.999. This supports the use of Eq. 
(1) for hoop stress or ShCF prediction. Anal- 
yses ranged from shear-dominated cases (M/V 
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- .  
(actual) x 100%]. The mean FERR was cal- 

= l .OO in.) to moment-dominated cases (M/V culated and the overall FERR distribution 
= 12.0 in.). plotted for visual evaluation. The FERR eval- 
Elastic property factors. -The effect of elastic uation process was given greater weight over 
properties On maximum stress was sep- other criteria because the end result will be 
arated from that of geometric variables by primarily used for prediction purposes. 

f, = p,F, and f, = p2F2 (3) The best fitting moment term function, F,, 
was found to be 

where 

sively examined. A typical plot is shown in 
Fig. 2. The consistent parallel nature of the 
lines representing different EP sets in all stud- 
ies confirmed the assumption of material in- 
variance in the functions Fl and F2 of Eq. (3). 
Material factors p, and p2 were determined 
from the f, and f, values calculated for each 
EP set. The material factors were normalized 
relative to a baseline EP set B (G17-E17), where 
p ,  and p2 are set to unity and f, = F,, f2 = F,; 
see Table 2. 
Expressions for F, and F,.-The 46 values of 
f, and f2 from EP set G17-El7 were fit with 
over 20 candidates of linear and nonlinear 
models using the Statistical Analysis System 
(SAS Institute 1985). Recall that f, = Fl, f, = 

F,, and p, = p2 = 1 for this data set. The models 
12 

e, 

to- 

B .  

f2 6. 

4. 

2. 

0 ,  

PI,  p2 = parameters that are solely depen- F, = 
1 

dent on elastic properties 
Fl,  F, = material-independent beam and 0.159 - 0.2134 + 0.187 

notch geometry functions. 

h (in.) were evaluated using: (1) r2 and Mallows' Cp 
statistic, (2) a visual check of residuals, and (3) 

FIG. 2. Influence of beam height on moment term fac- 
tor, f,, for EP sets A and B. the computed relative prediction error, FERR, 

for every observation [(actual - predicted)/ 

Legend 
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Relationships between the derived factors (f, This form has a mean FERR of 1% (overpre- 
and f,) and geometric variables were exten- diction) with standard deviation of 8.2%. 

2 4 8 8 1D 

TABLE 2. Materialfactors calibrated from the baseline EP set G17-El7 from 46 observations). 

Onhotropy ratios Matenal factor 

Ex - E. - - E, h 
P = -  Predicted 

EP set G t ~  E~ G x ~  PI P2 PI Po' 

E 
I From p, = 0.530 + 0.028(-); (coefi. of determlnat~on, r' = 0.971) 

G", 
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TABLE 3. Error in predicting ShCF using Eq. (8). safety in some materials for shear-dominated 

Relative prediction error. ShCFERR (%) cases, e.g., notch root at or close to the support. 
Evaluation. -Substituting (3), (4) and (5) into 

over- under- 
EP set Mean1 std. dev~ation prediction predictlon (2) and rearranging, 

- - 

A 0.67 4.84 12.7 13.9 
B 0.66 4.79 15.2 11.9 
C 0.58 5.26 17.0 12.5 
D 0.54 5.29 15.6 14.8 
E 0.40 5.62 18.9 12.2 

I Positlve sign means on the underpredict~on side. 

Maximum over- and underpredictions of ac- 
tual values were 25.3% and 1 1.8%, respec- 
tivel y. 

For the shear term factor, the best fit func- 
tion was 

F, = 1.464$0.712R-0.418h(0.847 - 0.316$) . ( 5 )  

This equation overpredicted the actual values 
for two cases out of 46 by over 12% and un- 
derpredicted another two cases by over 10%. 
FERRs for all other geometry cases (42 out of 
46), however, fell within the tight range of 
+ 5.9% of mean zero. 
Closed-form equation. -Substituting Eq. (3) 
into (2) and rearranging, 

(Th,max Let K = - P 2  and p = -, then 
PI P 1 

This form is convenient for predicting a critical 
shear value for a notched beam. K is an ex- 
perimentally determined material constant. 

P 2  The ratio p = -was approximately linear with 
PI  

orthotropy ratio Ex/Gx, (see Table 2) .  Because 
E,/Gx, is generally unknown and applicability 
to all EP sets is desired, p was set constant at 
1.12. Since p is a multiplier to the shear term 
in Eq. (6), its effect is negligible for moment- 
dominated cases. It does provide additional 

ShCF = 

- (Th,max - 

(% ) 

where pI and p, are in Table 2. This equation 
was used to predict ShCF for all geometries 
considered in the FE study. These were com- 
pared to actual ShCFs obtained from FE anal- 
ysis (138 comparisons per EP set). Relative 
prediction error shown in Table 3 was com- 
puted as ShCFERR = (actual - predicted)/ 
(actual) x 100%. 

These results show that the closed-form ex- 
pression accurately predicts the maximum 
hoop stress found from FE analysis for a range 
of practical cases. With this equation, the max- 
imum hoop stress of a specific end-notched 
wood beam geometry may be estimated with- 
out resorting to the use of finite element anal- 
ysis. 

EXPERIMENTAL STUDIES 

The experimental plan tested the ability of 
CFHS-based Eq. (7) to predict the strength of 
wood beams with a practical range of TEN 
configurations. Specifically, it tested the as- 
sumption that geometry and material effects 
are separable, i.e., that K is geometry-inde- 
pendent. Other experimental objectives were 
to assess (a) whether K is related to material 
properties such as specific gravity, block shear 
strength, and/or perpendicular-to-grain tensile 
strength, and (b) if sharp-comered notches can 
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be practically modeled as filleted with an ef- 
fective radius, Re. 
Materials.-Two materials were selected to 
represent anatomically different softwood and 
hardwood species groups: southern yellow pine 
(Pinus spp.) and yellow poplar (Liriodendron 
tulipifera). Kiln-dried pine lumber with min- 
imum defects was purchased from a local lum- 
ber yard. Bending specimens measuring 1.5 x 
3.5 x 48 in. and 1.5 x 9 x 48 in. were cut 
from the nominal 2 x 8 in. and 2 x 10 in. 
materials, respectively. All specimens were free 
of defects in the notch area. 

Most kiln-dried poplar was obtained from a 
local mill. Nearly clear beams, measuring 1.5 
x 3.5 x 47 in. and 1.5 x 9 x 47 in., were cut 
from 2 x 10 in. boards. For the effective radius 
substudy, 15 pieces of 1.5 x 3.5 x 48 in. lum- 
ber were taken from the stock used in another 
study. 
Filleted TEN beam study. -All variables con- 
sidered in the FE study were also considered 
in this experimental study. These include beam 
height h, fractional notch depth 4, radius R, 
notch location M/V, and material. A random- 
ized complete block design was used with ge- 
ometry variables contained in a block and each 
block representing a species group. The levels 
of the experimental variables are given below. 
M/V, expressed as notch location, was mea- 
sured from the center ofa 2 in.-wide aluminum 
block support. Thus, a notch at the support 
has M/V = 1.0 in. 

variable levels 

h (in.) 3.5, 9.0 
4 0.20, 0.50 
R (in.) 0.25, 0.50 
M/V (in.) 1.0, 10.0 

Each cell contained four replicates, except for 
two out of the sixteen cells per block. These 
cells each contained 6 to 9 additional samples 
collected in the sharp-cornered TEN beam 
study, discussed below. The total number of 
bending tests performed on filleted TEN beams 
was 158 (2h x 24 x 2R x 2M/V x 2sp. x 4 
+ 30 = 128 + 30 = 158). 

Beam width, b, was constant at approxi- 

mately 1.5 in. and beam span, L, was main- 
tained at 42 in.; this gave span-to-depth (L/h) 
ratios of 12.0 and 4.7 for h of 3.5 and 9 in., 
respectively. 
Sharp-cornered TEN beam substudy. -Notch 
location, M/V, and fractional notch depth, 4, 
were kept constant at 1.0 in. and 0.50, respec- 
tively. Most TEN cases in construction have 
M/V around 1.0 in. Zalph (1 989) did not find 
any conclusive evidence of an effect of 4 on 
the value of Re for interior notches. 

Using pine and poplar materials, the follow- 
ing geometry variables were first studied: 

variable levels 

h (in.) 3.5. 9.0 
R (in.) 0, 0.25 

The number of specimens per cell varied de- 
pending on the availability of materials. A to- 
tal of 33 sharp-cornered TEN pine beams (1 8 
for h = 3.5 in. and 15 for h = 9.0 in.) and 25 
sharp-cornered poplar beams (1 6 for h = 3.5 
in. and 9 for h = 9.0 in.) were prepared. The 
filleted counterparts (total of 44) were taken 
from two cells that correspond to the same 
geometry for each species in the previously 
described study. 

An additional set of 32 sharp-cornered TEN 
pine beams with M/V = 1.0 and 10.0 in., 4 = 

0.20 and 0.50, b = 1.5 in. and h = 9.0 in. was 
later prepared and tested to further confirm 
earlier results. 
Bending tests. -All beams were tested in cen- 
ter-point loading using an MTS servohydraulic 
testing machine under deformation control at 
0.10 in./min. Lateral support at midspan was 
provided for the 9.0 in.-deep beams. Beam 
center deflection was sensed using a linear vari- 
able differential transformer (LVDT) attached 
to a yoke system similar to that in ASTM D- 198 
(American Society for Testing and Materials 
1988). (See Fig. 3.) Load-deflection (P-A) curves 
were plotted for each specimen. 

Support at the notched end was adjusted for 
each combination of h and 4 so that all test 
beams were level before load application. A 2 
in.-wide aluminum bearing block was placed 
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FIG. 3. Test set-up for 9 in.-deep TEN beam 

at the supports to minimize transverse com- 
pression. The blocks were attached to tubular 
steel supports, which were free to roll, thus 
minimizing axial constraint. 
Moisture content and specific gravity. -A 
representative specimen was cut from the notch 
root area of all test beams that failed at the 
notch (6 1 samples per species). Moisture con- 
tent and specific gravity were determined using 
the procedures of ASTM D2395 and D2016 
(American Society for Testing and Materials 
1988). 

For pine, the average MC and SG on oven- 
dry weight and volume basis were 1 1.4% and 
0.54, respectively; for poplar specimens the 
averages were 7.7% and 0.50, respectively. 
Block shear strength. - Shear block samples 
were cut from test beams at a location free of 
cracks, knots, and other defects. Totals of 49 
pine and 51 poplar samples were obtained. 
Block shear strength was determined using the 
procedures of ASTM D 143 (American Society 
for Testing and Materials 1988) except for the 
reduced specimen size (2 x 1.5 in.) and vari- 
able ring orientation. Bendtsen and Porter 
( 1978) found no significant differences be- 
tween shear strengths of standard and slightly 
undersized samples. 
Perpendicular-to-grain tensile (TPERP)  
strength. -Tension perpendicular-to-grain 
(TPERP) samples were taken from a location 
near that of the shear blocks. Again, ring ori- 
entation varied and size was smaller than the 
ASTM Dl43 standard. Totals of 49 samples 

A (in.) 

FIG. 4. Schematic diagram of typical load-deflection 
curves from tests of TEN wood beams- 1 for most cases 
with h = 3.5 in. and 2 for most cases with h = 9.0 in.: (a) 
proportional limit, (b) major drop, and (c) maximum load. 

for pine and 50 for poplar were tested using 
ASTM D 143 procedure, and TPERP strength 
was determined. No adjustments were made 
for size. 

RESULTS AND DISCUSSION 

Notched beam strength 

The material strength parameter, K, was cal- 
culated using 

where 

i = load level, PL for proportional limit 
MAJ for major load drop 

(2 5%) 
MAX for maximum load 

p = 1.12 (fixed value from Table 2) 
F,, F, = Eqs. (4) and (9, respectively. 

The CFHS model is strictly applicable only 
to notched beam behavior below the beam 
proportional limit (PL) or before crack initi- 
ation (CI). Beam strength beyond PL or CI 
may not be well modeled because of nonlinear 
or inelastic behavior. 
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TABLE 4. Summary statistics of calculated K from experiment. 

K 

M/V Mean C.V.' 
Spec~es' (in.) Load level n (psi) Std. deviation (%) 

S. pine 1 .OO PL 38 5,880 1,420 24.1 
MAJ 39 10,340 2,520 24.3 
MAX 38 10,980 2,720 24.7 

10.00 PL 30 13,900 4,690 33.8 
MAJ 30 18,320 5,340 29.2 
MAX 30 22,480 8,090 36.0 

Y. poplar 1 .OO PL 34 7,070 2,060 29.1 
MAJ 34 1 1,040 3,030 27.5 
MAX 3 3 12,080 3,230 26.7 

10.00 PL 3 1 14,420 4,190 29.0 
MAJ 32 21,830 3,960 18.1 
MAX 3 1 27,180 8,840 32.5 

' The average moisture content of S. plne matenal was 11.4% and that of Y. poplar material was 7.7%. 
C.V., coeffic~ent of variation. C.V. = (std. dev~ation)/(mean) x 100%. 

Zalph (1989) did not find a consistent re- 
lationship between PL and CI loads in his work 
with beams having tension interior notches, 
and thus he considered only the load at CI. 
Stieda (1 966), however, noted that PL and CI 
loads always coincided in his tests of small, 
dry softwood beams. Murphy (1 978), with tests 
of small, dry Douglas-fir beams, also consid- 
ered PL load as "failure load because it cor- 
responds to crack initiation that precedes vis- 
ible opening." 

In the present study, the visible CI load was 
observed in the load-deflection (P-A) curve to 
coincide with the first major drop in load 
(MAJ). This load is defined as the level at which 
load first drops by 5% or more. For a few beams, 
the MAJ load occurred at PL, but for most, it 
occurred beyond PL. Figure 4 shows typical 
P-A curves for wood beams with TEN. Ta- 
ble 4 summarizes test results. 

The MAJ load was considered failure be- 
cause beam behavior after MAJ was unpre- 
dictable and highly variable. For TEN beams 
with h = 3.50 in., P,, = P,,, for 8 1% of pine 
and 92% of poplar samples. Where h = 9.0 in., 
this is true only for 38% of pine and 3 1% of 
poplar beams. Specimens that continued to 
bear load after the major load drop acted as 
prismatic beams with effective depth values 
controlled by grain slope. These observations 

of the maximum load were very consistent with 
those of Stieda (1966), Hirai and Sawada 
(1979), Murphy (1986), and Gerhardt (1984a). 
All analyses from here on are, therefore, con- 
cerned with MAJ only. 

Based on test observations, much of the 
variability in KM, was related to variable ring 
orientation in the notched beams. This was not 
quantified. 

Geometry efects 

Hypothesis testing procedures, described in 
Foliente (1989), were found to have very low 
power because of high variances within groups 
and insufficient sample size. Hence, to assess 
the geometry independence of K, graphs of cu- 
mulative distribution function (cdf) of K with- 
in cell groups were compared. If K is indepen- 
dent of geometry, then cdf s from beams with 
different geometries should be superimposed, 
essentially showing the same curve. 

Figure 5 shows the cdf for KMAj calculated 
for poplar beams grouped by M/V and $. It is 
evident that the effect of $ was very small com- 
pared to that of M/V. Similar trends were ob- 
served when the data were grouped by M/V 
and h and M/V and R. Plots with comparable 
data from the pine beam tests showed the same 
effects. The CFHS theory, while adequate for 
predicting the effects of geometry variables on 
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0 6 0 8 BD ES 90 

K (x IOU psi) 

FIG. 5. Cumulative distribution functions of K,, for 
poplar, grouped by M/V and fractional notch depth, $. 

strength, may not fully characterize the influ- 
ence of notch location. 

To explore this further, let normalized shear 
VN = V/bh. This variable allows comparisons 
of this work with that of other researchers and 
shows the sensitivity of VN, as computed from 
test data, to geometry changes. Ratios of av- 
erage VN (or PN) at M/V = 1.0 to PN at M/V 
= 10.0 in. are given in Table 5. These ratios 
of experimental results are estimates of the true 
(or population) ratios for the material. Accu- 
racy of the estimates is dependent on sample 
sizes and variance but these ratios can be com- 
pared with theoretical model predictions of VN. 

The sensitivity of model VN to geometry 
changes was calculated by fixing material pa- 
rameters in both TEN and Zalph (1989) equa- 

tions and calculating VN's for the selected ge- 
ometry changes. This was also done with the 
linear elastic fracture mechanics (LEFh4)-based 
models given by Gustafsson (1988) and the 
Australian code (SAA 1988). Some results 
shown in Table 5 indicate that the influence 
of M/V is not well predicted by any of the 
LEFM or CFHS models. Changes in other ge- 
ometry variables (e.g., h, 4 and R), were pre- 
dicted reasonably well by most theoretical 
models. The TEN equation, in particular, gave 
ratios similar to those from experiment, thus 
supporting earlier observations made of cdf 
plots. 

The M/V-effect was further examined by 
physically testing an additional set of matched 
pine TEN beams with h = 5.50, b = 1.50, D 
= 1.65 (or 4 = 0.30), and R = 0.25 in. and 
M/V varied at 1 .O, 5.50 and 10.0 in. (10 beams 
per M/V for a total of 30 TEN beams). All 
other test details are the same as described 
earlier. Average K, shown below, agrees with 
previous results (see Table 4). 

M/V (in.) K (psi) C.V. (O/O) 

It is interesting to note that the observed in- 
crease in VN (and consequently, K) due to mov- 
ing the notch root from 10.0 in. to 1.0 in. away 
from the support was overestimated by both 
CFHS-based and LEFM-based models. The 
test data above indicate a slightly curvilinear 
relationship between K and M/V for notch lo- 
cations less than or equal to M/V of 10.0 in. 
The value of K at M/V = 10.0 in., however, 

TABLE 5. Sensitivity of normalized shear capacity to change in notch location 

Ratio of ON a1 M/V = 1.0 In. to ON at M/V = 10.0 in. 

Geometry Experiment CFHS theory LEFM theory' 

h ( ~ n . )  @ Pine Poplar TEN Zalph Gus Aus 

3.5 0.20 - - 4.54 5.41 3.70 3.37 
0.50 2.90 2.67 5.00 6.06 4.35 4.27 

9.0 0.20 1.23 1.06 2.25 2.06 2.27 2.10 
0.50 1.61 1.57 2.70 2.25 2.63 2.64 

I Gus, Gustafsson (1988); Aus, Australian Standard (SAA 1988) 
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corresponds to that found by Zalph (1989) in 
beams with a tension interior notch. His re- 
sults also show that K remained constant as 
M/V is increased beyond 10.0 in. 

The variation in K with notch location for 
notches close to the support may be explained 
by Saint-Venant's principle, which states that 
the stress distribution in an elastic solid is not 
perturbed by load application, except in the 
neighborhood of the loaded region. This can- 
not be stated precisely because the principle 
rests on physical rather than mathematical ar- 
guments (Cook and Young 1985). For axially 
loaded isotropic materials, the characteristic 
decay length over which end effects are signif- 
icant is less than or equal to one specimen 
width. Saint-Venant's principle is thus rou- 
tinely invoked in neglecting elastic end effects. 
For axially loaded, highly anisotropic but 
transversely isotropic materials, however, the 
characteristic decay length is of the order of 
several specimen widths (Horgan 1982; Choi 
and Horgan 1977). With beams, Sandorff 
(1980) found that the effects of a concentrated 
transverse load (as that at beam support) on 
the stress distribution of an isotropic material 
are highly localized and agree with Saint-Ve- 
nant's principle; in contrast, the effects in an 
orthotropic beam extend much further out into 
the span of the beam. 

For the TEN beams in question, stress con- 
centrations arise at the support locations and 
the notch root. For beam tests where M/V = 

1.0 in., the bearing block is adjacent to the 
notch and the high stresses caused by the sup- 
port interfered with the free notch stress dis- 
tribution. The CFHS FE program and fracture 
mechanics methods did not accurately repre- 
sent Saint-Venant's end effects. The resulting 
complex stress distribution was not measured, 
but its effect is manifested in the decreased 
experimental value of K for beams with notch- 
es at or very close to the support. 

Strength prediction equation 

Preliminary tests of the M/V-effect indicat- 
ed that a simple adjustment to Eq. (9) can 
account for Saint-Venant's end effects in TEN 

beams. Notch strength parameters for beams 
with notches within 1.0 in. 5 M/V r 10.0 in. 
may be expressed as a function of M/V. 

A general strength prediction equation is 
given as 

where A is is F, given in Eq. (4), B is pF, or 
1.12 F, given in Eq. (5) and K = K - cr(AM/ 
V). For the case where 1.0 in. 5 M/V 5 10.0 
in., AM/V = 10 - M/V and a = 765 for pine 
(obtained from limited tests in this study); 
where M/V > 10.0 in., AM/V = 0 and K = K. 
Further tests are necessary to determine if a is 
constant for all species. 

Sharp-cornered notches- R, 

Most notched beams tested in this substudy 
(both sharp-cornered or filleted, R = 0.25 in.) 
had a load-deflection trace with the major load 
drop coinciding with the maximum load. The 
data from these tests are used to find an effec- 
tive (but fictitious) radius, Re, that allows use 
of Eq. (10) to predict the strength of sharp- 
cornered TEN beams. 

Equation (10) may be written as 

where K = K - a(AM/V) and 

The ratio of normalized shear strengths of sharp 
and filleted TEN beams is 

Rearranging, 
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TABLE 6. Efective radius, R,, to model sharp-cornered end notches, derived for M/V = 1.0 in. and 6 = 0.50 by Eq. 
(14). 

Pine 3.5 183 0.0903 259 0.1275 0.09 1 
9.0 132 0.0872 153 0.1012 0.168 

Poplar 3.5 163 0.0904 230 0.1275 0.091 
9.0 132 0.0790 169 0.1012 0.128 

Everything on the right-hand side of Eq. (14) 
is known: the bracketed term is a ratio of ex- 
perimental results and &,=,.,,, is computed us- 
ing Eq. (12), with nominal values of h, + and 
D with R = 0.25 in. The computed value of 
gRC is equated with Eq. (12) and the radius Re 
determined. Calculated Re are summarized in 
Table 6. The minimum value was 0.091 in. 
for both species and in all cases, 0.09 1 5 Re 
5 0.168. It may be sufficient and convenient 
to use Re = 0.12 in. to model sharp-comered 
notches in beams of dry materials. 

Determination of K 

Several linear and nonlinear equations were 
investigated to relate K with other material 
properties (SG, block shear strength and per- 
pendicular-to-grain tensile strength). The non- 
linear equations were those linearizable by 
transformation of either response or predictor 
variables. The equations had the form similar 
to those investigated in the FE study. A full 
prediction model, containing all three material 
properties as predictor variables, and its sub- 
sets were fitted to separate data of pine and 
poplar. Since the objective was to predict K 

from readily known material properties, the 
evaluation of the models followed the proce- 
dure described in the derivation of the theo- 
retical closed-form equation. The relative pre- 
diction error in predicting K was computed as 
KPERR. 

The best prediction models were found to be 

with mean KPERR of 1.99OIo and 0.92% on 
the overprediction side for pine and poplar, 
respectively. The pine model has a maximum 
overprediction error of 69% and maximum 
underprediction error of 33%; that for poplar 
has maximum overprediction of 39% and 
maximum underprediction of 19%. The ad- 
dition of either block shear strength or per- 
pendicular-to-grain tensile strength to the 
model did not provide any substantial im- 
provement in predictive ability. This may be 
partly attributed to the differences in the stress- 
es induced at the notch and the stresses mea- 
sured and computed using standard ASTM 
clear specimen tests for block shear strength 
and perpendicular-to-grain tensile strength. 
The most predominant characteristic that in- 
fluenced notched beam strength is growth ring 
orientation and, to some extent, grain angle. 
These growth characteristics, however, are dif- 
ficult to control; but limits and worst case con- 
ditions could be used to extend the prediction 
models to design criteria. At present, Eq. (1 5) 
is not recommended for predicting K. 

The preferred way to establish K for other 
materials is by notched beam tests. A random 
sample of beams can be collected from a given 
species. K is determined by destructive testing 
of TEN beams with the notch located at M/V 
2 10.0 in. to match the K in this work. All 
other notch and beam geometry variables can 
be arbitrarily selected but should be varied for 
wide applicability and smoothing of minor ef- 

K = 34,822(SG)'.04 for pine fects. With adequate sample size, appropriate 
(r2 = 0.27 for transformed linear model) statistical properties of the K distribution can 

K = 43,827(SG)'.01 for poplar be determined. An allowable value can be es- 
(r2 = 0.32 for transformed linear model) (1 5) tablished for each species by modifying the 
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lower 5% exclusion limit. similar to current Proc. Pacific Timber Engineering Conf., May 1984, 

practice for deriving allowable unit stresses of 
visually graded structural lumber. 

CONCLUSIONS 

Critical fillet hoop stress (CFHS) theory was 
successfully used to develop an equation for 
predicting the strength of tension end-notched 
(TEN) wood beams. The equation combines 
the results of finite element and statistical anal- 
yses of 690 different TEN beam configurations 
and experimental tests of 362 full-size beams. 
This closed-form expression accounts for the 
effects of loading type, end support, and beam 
and notch geometry variables such as beam 
height, fractional notch depth, radius, and 
notch location. The effect of span-to-depth ra- 
tio is implicit to the model. Notched beam 
strength is represented by a material param- 
eter, K, which can be obtained by destructive 
testing of notched beams. 

The strength equation applies to both filleted 
and sharp-cornered tension end notches. An 
effective radius, Re, is used to model a sharp- 
cornered notch (R - 0); R, was determined 
and confirmed for two materials. A method of 
determining Re for other materials was shown. 

This equation can be used to establish design 
criteria for notched beams that explicitly con- 
sider notch geometries and the relative pro- 
portion of moment and shear at the notch sec- 
tions. These factors are currently not considered 
by designers. 
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