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'I'he deflection of ~rii~ltilayer-sand\vicll he;ul~s (o r  platcs \vith a dominant dimen\io~i in 
plan) \vhcn all layers arc \vea!i in shear is s t ~ ~ d i e d  rvitll :I finite-element approach. Thca 
thcory is applied to the deflection of ply\vood whvn soaked (moistr~re content Inore 
than 305%), and a partic~ilar case of five-ply plywood is stutlied in dctail. The numerical 
rc~sults arc shown to colrvergts rapidly with increasing nn~nller of elements and thc theoretical 
predictions arc vcrified I)y c~xperimental nreasurczlncnts. It is shown that the influence of 
shear deformations on the deflection of pIy\vood, when soakcd, is i~nportant and sho111tl 
be taken into accoulrt in design specifications. 

A(1tlitionul kcywortls: sar~dn,ich platcls, pl>,\vood, finite clelncnts, concrete forlns, s t n ~ c t ~ ~ r a l  
engineering. 

INTKODUCTION 1)oth show a marked decrease wit11 an in- 

~Ollvelltiollal sandwid] plates crease ill moisture content. 'I'I7he11 thc ply- 

stiff face layers alld a weak have beell  wood is co~nplctely soaked, with moisture 

investigated ( plalltel,la 1986) content inore than 30% (case of concLrete 

al,d, Illore recently, nlultilayer plates form" for example), both moduli are rela- 

,, stiff layers aIld n- l  weak cores have re- tively small and shear deformations cannot 

ceived from several researchers. 1)e ~~eglectcci in any layer. Chiu and Biblis 

A triallgul:lr finite rlrlnrllt for tile llending ( 1971) presented a method of cornl)utation 

:I,,kllysis of sllch plates has recelltly been for shear deflections ill plywood. Their 

pll1,lished (Khatua alld Cheullg 1972) and "mplified a p ~ ~ a c h ,  however, does not 

Otller ;lut~lOrs llave a,,alyzed the satisfy interply continuity of shear stresses. 

series solutiolls (Azar 1968). In all This paper presents a finite-element ap- 
these however, strail, energ" pwach to the problem of deflections ill 
due defommtiOns is  calclrlated fo;. nlultilayer-sand\Yicll ljeams (or plates with 
the cores al,d rleglected for stiff a dominant dimension in plan) when all the 

layers. shear deformations have to be accorltlted 

There are cases in which this assumption "". 

cannot be ~nade .  Consider, for example, GENERAL THEORY 
the case of plywood when the grain ill the 
stiff face layers is parallel to the span and A.ssumptions 

the grain in the weak cores perpenclicular 1. The weak cores are assumed to pro- 
to it. The shear modulus for the stiff layers vide resistaiice to shear deformation only. 
is the longitudinal-radial of the wood, 2. There is 110 normal strain in the direc- 
while that for the weak cores is the radial- tion perpentlicular to the span of the beam 
tangential GItrr of the wood. The latter is and, therefore, all points on the samv per- 
several tirnes smaller than the f o n n c ~  and pendicular have the same vertical displace- 

~ -- merit. 
' 'l'llr experinlental data prcsentcd hrrcin were 3, tJle Ilorlllnl and sIlear straills are 

niadc. availal~le through thc cooperation of the ill tile calcul;itioIl straill 
I<cst.al-ch :~nd D t ~ e l ~ ~ p m e n t  I,al~orator>., Council 
of Forest Industries of British Colllull>ia, ~ ( ) * h  ellergy co~ltr ib~t iol l  of the stiff layers. 
\'ancou\,er, Canada. 4. The position of the neutral axis is 
\\'OOl) AN11 l ~ l l 3 E I ~  182 FALL 197.3, 1.. 5(3) 



i~ssu~ilcd known beca~lse of syinmetry of 
co~lstruction of the plate. This plane is 
llscd as the origiil z = 0 to rcfer the position 
of tllc different layers. 

Deformations art(/ strait? e~crg,r!l 

Co~~s ider  Fig. 1. The t~tll layer has a 
thickness t,, and it  is located at a clistaricc z,, 
from the neutral axis z = 0. After deforma- 
tion, points A, B, and C will be located at 
A', H', ; ~ n d  C'. The displacenlent u in the x 
clircction for an a r l ~ i t ~ w y  point C in this 
layer cmi bc cxpressed as 

~vhile, according to asslnmption 2, the verti- 
cal dis],lacement of C is the co~nnlon de- 
flectioll \ i 7 .  The shear strain 7 at C is then 
givCll by 

aiid tl~r, incrc~nent 8 u : i n  the displacement 
11::: l)ct\veen points A' and C' is, therefore, 

I t  is convenicnt to change variables from 
z to '1 according to 

The slicar strain -, is constant in  the weak 
cores. ;IS implied 1)y assumption 1. 0 1 1  the 
other hand, the shear strain in tlic: stiff 
layers varies \vitli 7, a11d il l  a first approxi- 
nlatio~l this variation can l ~ e  assunled to he 
c[l~;~lratic. A paral~olic shear distribution 
is t l ~ c  rcsnlt of the first-order approximation 
made in the ordinary theory of bending of 
I)t.anls and plates. I t  is assulned, therefore, 
tliat, ill general, 

where y,, is then the shear strain at the 
center of the layer. 

\Vhen the layer is a weak core, the shear 
\train is simply given by 

Wher~ the nth layer is stiff, the neighbor- 
ing layers are weak cores with constant 
shear strain, and continuity of shear stresses 
at the interfaces between these layers pro- 

a 1011 vides two equations for the determin t' 
of the constants a and 11 in Eq. 6. Thi~s, for 
;L stiff layer 

~vliere C,, is the shear modulus corre\poild- 
uig to the ~ztl-I layer. 

Assurne ilow that the nth layer i h  stiff. 
[ntroduciiig Eq. 8 into Eq. 5 and intt,grat- 
ing, 

The total increiilent in u* clue to shear 
deformation of the nth stiff layer is ob- 
tained for 7, =I 1 in Eq. 9, that is 

Introducing ilow Eq. 7 into Eq. 5 and 
letting 7 = 1, the total increment in 11:: due 
to the shear deformation of a weak core is 

Assumc once again that the nth layer is 
stiff. The total displacement u for an arbi- 
trary point C in this layer is given by Ecl. 1. 



The displacement u" for C can be obtained 
as the suin of the contributions from all the 
stiff and weak layers between the nth and 
the neutral axis according to Eqs. 10 and 
11, respectively. Furthermore, the ii~cre- 
~nen t  in u V u e  to the deformation of the 
nth layer itself, as given by Eq. 9, rnust 
I)e added. That is, 

where the functions H,-ji) and & ( i )  are 
defined such that: 

for a weak layer, & ( i )  = 1 and 8,(i) = 0; 
for a stiff layer, H,v(i) = 0 and & ( i )  = 1. 
The normal strain t,, in the nth layer can 

now 1)e calculated from 

giving, from Eib 12, 

If E,, and G,, are, respectively, the elastic 

moduli for normal and shear strains for the 
rrth stiff layer, its strain energy per unit 
width is given by 

where L is the span of the beam or plate, 
the norn~al strain t,, is given by Eq. 14 and 
the shear strain y by Ecl. 8. 

For a weak core and according to as- 
s~nnptioll 1, the strain energy is due to 
shear deforinatiol~ only. Therefore, from 
Eq. 7, 

The total strain energy U, per ~ni i t  width 
of heain or plate, is given by the sun1 of 
the contributions from individual layers 
according to E:q. 15 or Eq. 16, depe~lding 
on vvhether the layer is stiff or weak. 

Consicler a particular case as shonr~l in 
Fig. 2. Layers 1 and 3 are assumed to be 
stiff while layer 2 is the weak core; t l ,  t2 and 
ti; are the corresponding thickness and El, 
E:$, GI, G2 and G3 are, respectively, the 
correspondir~g elastic and shear moduli. 
The construction is assumed balanced, and 
the neutral axis is thus located on the mid- 
plane of the panel. Equations 15 a11t1 16 
call be used to ol~tain the expression for the 
strain energy U. The calwlations are 
tedious, if straightforward, and only the 
final result is presented here. The total 
energy can be expressed as follows, 
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lire:. 1. Deformation of the layered systcni. 

whrrc the collstm~ts Qi are given in Ap- cretization must satisfy, for convergence, 
pendix I. continuity in both functions and first deriv- 

ative for the deflection w and continuity 
FINITE-ELF,XII.'~<T ANALYSIS of the func:tion for the shear strains. The 

As shown in Eq. 17, the strain energy beam is partitioned into elements, one of 
expression contains the second derivative which is shown in Fig. 3. At each node 
of the deflection w a i d  first derivatives of the unknowns are the value of the deflec- 
the shear strains. A finite-element dis- tion \v, the slope w', and the value of the 
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sllcCu \trains in each of the layeru. For 
the five-layer plate of Fig. 2, five unk~lowns 
are associated with each node. 

The vxriation of w within the element is 
specified a5 cnbic, while the variation of 
the shear strains is taken to be linear. Both 
\ ariation5 are thu5 ~llliquely deterrnined by 
the nodal parameteru, 

al~t l  for the nth layer, 

Using Eqs. 18 alld 19, the functions i11 
energy elpression call be written as fol- 
~ O \ V S  : 

The stiffness matrix [K] for the elcment 
is then a 10 >< 10 syn~nletric matrix with 
componeilts kii given by 

I:::: 1 \vhere, for e x ; ~ ~ ~ ~ p l e ,  RIl i  is the it11 c,onl- 
ponent of the row vector < kli >. 

16: = 1:: 1 (21) The components kij are easily generated 
by nunlerical integration, with a two-point 
c1 I: usslan . . '  integration scheme sufficiellt for 

7.). the integration of, at most, quadratic poly- 
-I non~ials. The assembly of the global stiff- %, 

ness niatrix and the solution of the resulting 
equatioi~s can be carried out with starldard 

and the row vectors < hl, > are given by finite-element analysis techniclues (Zien- 
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kiv\vicz 1971). A completely similar ap- 
proac11 c;u~ 1)e followecl for layered systcnls 
with niore (or less) than the five layers 
consiclt,red in the pmticnlar case studied 
here. 

(hnsider a plywood l~eam with the parti- 
cular lay-up of Fig. 2 and loaded on a 
single 12-inch span wit11 a concentrated 
load at- ~nidspan. Tl-tt. bean1 width was 2 
i~lclles and the load was applied on the 
entire width. This case \\r:rns used to study 
the convergence of the finite-elemelit ap- 
proach and to verify evperinleiltally the 
n~~~i ie r ica l  results. Two tests were made 

' A c o ~ ~ l p ~ ~ t v r  prograln, I~ased oil the t11eoretic:il 
111odr1 prescntecl in thi.. papcr and coded in 
FOKTHAN I\', is avail;ll,lr fronl the Wcste1.n 
I'orcxst Products L,al,orator?;, Canadian Forestry 
Scr\-ice, (itj20 N.W. hlariut~ Dri\ e ,  Vancouver, B.C. 
\'liT 1x2 (:;tnacln. 'I'llc. progranl call 1113 used 
\\,it11 :3,li ancl 7-ply ply\vood. Continnons beams 
of  111, to fo~ l r  sp:~iis can I)? sturlicd. Plywood geo- 
nlrtric :tnd elastic propc~~tics arcL c n t c ~ ~ e d  ply hy 
ply. 011tpl1t i~icl~iclrs t h ~ .  drflectetl s h a p ~ ,  maxi- 
11111111 l)erlding, ilnd rolling shear stresses. The 
progralil is si~nple to ilsr and fr~ll  i np i~ t  instruc- 
tioils arc3 gi\rcn. 

I .  3 Filiite c~lrn~ent-original and displaced 
position. 

20 40 NUMBER OF 
ELEMENTS 

1 7 1 ~ .  3 .  Finitc c>lement analysis convergtSlice test 
for factor or, fi\e-layer Test A specimen. 

with the plywood soaked in water until 
the moisture content was about 32'28. In 
test A, all plies were Douglas-.fir I Psc?udot- 
.sugu mensie.sii (Mirb.) Franco]; in test B, 
Douglas-fir was used for the face plies and 
the center ply only, while white spruce 
IPiceu gluucu (Moench) Voss] was used 
for the cores. The individual ply thick- 
nesses, obtained as mean of measured 
\ d u e s  mrer 36 specimens, are shown in 
Table 1. 

Table 2 shows the moduli of' elasticity for 
the soaked plies, deterinined experimc.ntally 
with the exception of and G3 for 
Douglas-fir) . The shear modulus \f7ns as- 
sumed to be related to GI;.,. of Douglas-fir 
according to GI,]{ = 10 n relationship 
which approximately holds for a moisture 
content of .11.2% (U.S. Forest Service 1955), 
(Kollmann and CBtC 1968). The ratio be- 
tween and is assumed to wrnain 
constant for higher moisture contents. This 

TABLE 1. Aleair thicknc~sses of f)lies for fit;(?-layer 
te.st specimens 

Test A l r s t  B 

N 36 36 

tl ( in .  ) 0.102 0.105 

t 2  ( i n . )  0.099 0.098 

t, ( i n . )  0.101 0.098 
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TAI%I.E 2. Alo~ltili of elasticity for fiuc-lo!ler tesf sl)eciiilens 

Donglas - f i r  W .  s p r u c e  

* 
G2 G =G 

1 3  
E =E 

1 3  G2 

( l o 3  p s i )  ( l o 3  PSI) ( lo6  p s i )  (10 p s i )  
3 

C.V. ( 2 )  17 .8  13 .3  14 .0  - 

95% Conf. 
i n t e r v a l  
f o r  mean 

* 
Based on GLR / GRT = 10 (U.S. Fores t  S e w i c e ,  1955).  

is shown to be approxii~lately true for Sitka 
spruce ( Kollmann and Cdtb 1968). As will 
11c sllown later, the influence of the shear 
~nodult~s for the face plies and center is not 
great and a very accurate ~lleasuremerlt of 
this shear modulus is not needed. 

llodulus G2 was measured using ASTAI 
Standard Test D-2718 for plywood in 
rolling shear; hloduli El and E:< were 013- 

tained with ASTM Standard Test D-3043, 
\lethod C, for plywood in flexure under a 
p i r e  moment. 

111 general, the inasimuin deflection A 
c:un be expressed as the product of the 
maximum deflection A,, calcl~lated by using 
ordinary l ~ e a n ~  bending tlleory times an 
amplification factor a which accounts for 
the shear contribution to the deformation, 

I11 the case of n sinlply supported lx,am 
with a concentrated load at midspan, 

a ud P -= concentrated load 
1, == span of the bean1 

EI -= panel stiffness 

The panel stiffness EI is computed, as ~isual 
iri plywood design, by neglecting the con- 
tribution of the weak cores and considering 
each stiff layer with its correspo~icling 
modult~s E. 

Using the mean valt~es for the mod111i of 
elasticity of Tal~le  2 and the finite elenlent 
analysis, the theoretical factor a was 01,- 
tained for test A for different numbt~rs of 

A = a A , ,  (24) T!\I,L.>; 4. z-~t , i ) )~ i f i ( , t~ t io t~  ft~ctor a. ~ o n ~ p ( ~ r i , ~ o ~ :  !I(,- 

ttcec~il cxperirncntal uiltl theoretical rcszi1t.v 

, . J n s r . ~  3. Con.vtant ~i f o r  c.c~Icirlntiot: of A, , .  nluxi- 
Inirrn deflection rlzrc to bcnrling only, ii.rii~g uni- 

fo~inly tlistrihrrtctl load 

Beam Configuration 6 

L 
3 0.013021 

L L 
4 0.005208 

L L L 
4 n 0.006770 

L L L L 
A A 0.006324 

Test  A T e s t  E 

N 36 36 

M e  an 1.323 1.713 

s 0.162 0.172 

C.V. (%) 12.3  10.0 

95% Conf. I n t e r v a l  
f o r  Mean 1.267 - 1.379 1.654 - 1.772 

T h e o r e t i c a l  Inter-  
v a l  f o r  Mean 1.218 - 1.329 1 .707 - 1.986 



CURVE G2 GI = G3 EI = E3 

REF (lo3 psi) (lo3 psi ) (lo6 psi ) 

I 1.0 52.9 1.66 
2 2.0 52.9 1.66 
3 4.0 52.9 1.66 
4 6 .O 52.9 1.66 
5 8.0 52.9 1.66 
6 10.0 52.9 1.66 
7 2.0 120.0 1.93 

12.0 18 .O 24.0 
SPAN L ( in )  

I .  5. Alrrplific;~tion tnctol. a for :i-sp;ln Ilram, 5-ply ply\vood pancl, 11si11g d i f f r r cn t  elastic. ~ ~ r o c l l ~ l i .  
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clc~nents along tlie span. The results are 
sllown ill Fig. 4, where it is apparent that 
coi1\7ergence is rapidly obtained wit11 few 
elenients. 

Agreement between experiinelltal and 
theoretical predictions was tested by com- 
parisoll of the 95%-confidence interval for 
tllc meall factor 0 measured from tests A 
and H ;1nd the theoretical interval obtained 
using the 95%-confide~rce intervals for the 
lnean of the lnodlili of elasticity as given 
ill Table 2. Theoretical and expcrin~ental 
inter\~als for the mean factor 0 are shown in 
Table 4. The agreement is good, with a 
relatively high degree of overlapping. 

111 the general case of coiltinuous beams 
unifornrly loaded, the maxirnum deflection 
A can also he expressed as in Eq. 24. 
Tlic deflection A, is given, in this case, by 

where p = u~liformly distril~uted load, 
lIj = constant, given ilk Table 3 for 

different beam configurations. 
As a ~lurnerical example, consider the 

same ply\vood panel of tests A artd B but 
in a three-span continlions beain configur:~- 
tion. The deflection A,, is obtained from 
Eq. 26 and Table 3 and corresponds to the 
cetltral deflection in the end span of the 
I~eam. Figtire 5 sl~ows the factor as a 
function of the span L and for several shear 
inodlilus G2 for the weak core. Other 
~noduli were kept coustant and as given, 
for Douglas-fir, 1)y the mean values of 
Table 2. It  is apparent that large shear 
contril)utions to the deflection develop as 
tlie core is made weaker in shear ant1 that 
this effect is more inlportant the shorter 
the span. The effect, for this lay-up, of 
changing the elastic and shear rnodull~s of 
the stiff plies is not very significant, as 
sho\vn I)y comparison of curves 7 ant3 2 of 
Fig. 5. The cores can I)e nlade weaker in 
shean 1))~ eitllcr ~naking tllein thicker or by 

using a weaker species like white Tprllce, 
two situations that should be considered 
in desigrling lay-ups for use under high 
moisture-content conditions. 

CONCLUSIONS 

A finite-eleinent approach to the prob- 
lem of deflection of multi-layered sandwich 
beams or plates with layers weak in shear 
has been developed. The numerical method 
was applied to the case of plywood panels 
a r~d  shown to converge well, with few ele- 
ment\ needed for reliable results. Theoreti- 
cal predictions agree well with esperi- 
~nental rneasuren~ents in the sense that 
confidence intervals for the maximum de- 
flection measured in experiments call be 
estimated by using the theoretical approach 
and taking into account the correspoi~ding 
confidence intervals for the elastic mocluli. 
The influence of weaker cores ill the dsflec- 
tion of plywood panels, through shear de- 
forillation, has been show~l to be significant 
and should be taken into account in de\ign 
criteria. 
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;iPI'gNL)IX I-CONSTANTS Qi 

1.e1 tSIl =: ( L , )  + z l , + ,  ) / 2 .  tllell o7 = .j 2 :3 1::;t:; ; 

1. t'i I;.> t : :  > 
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1 3  
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