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ABSTRACT

The deflection of multilayer-sandwich beams (or plates with a dominant dimension in
plan) when all layers are weak in shear is studied with a finite-element approach. The
theory is applied to the deflection of plywood when soaked (moisture content more
than 30%), and a particular case of five-ply plywood is studied in detail. The numerical
results are shown to converge rapidly with increasing number of elements and the theoretical
predictions are verified by experimental measurements. It js shown that the influence of
shear deformations on the deflection of plywood, when soaked, is important and should
be taken into account in design specifications.

Additional keywords: sandwich plates, plywood, finite clements, concrete forms, structural

engineering.

INTRODUCTION

Conventional sandwich plates with two
stiff face layers and a weak core have been
extensively investigated (Plantema 1966)
and, more recently, multilayer plates with
n stiff layers and n-1 weak cores have re-
ceived attention from several researchers.
A triangular finite element for the bending
analysis of such plates has recently been
published (Khatua and Cheung 1972) and
other authors have analyzed the problem
using series solutions (Azar 1968). In all
these studies, however, the strain energy
due to shear deformations is calculated for
the weak cores and neglected for the stiff
layers.

There are cases in which this assumption
cannot be made. Consider, for example,
the case of plywood when the grain in the
stiff face layers is parallel to the span and
the grain in the weak cores perpendicular
to it. The shear modulus for the stiff layers
is the longitudinal-radial G, of the wood,
while that for the weak cores is the radial-
tangential Gry of the wood. The latter is
several times smaller than the former and
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both show a marked decrease with an in-
crease in moisture content. When the ply-
wood is completely soaked, with moisture
content more than 30% (case of concrete
forms, for example), both moduli are rela-
tively small and shear deformations cannot
be neglected in any layer. Chiu and Biblis
(1971) presented a method of computation
for shear deflections in plywood. Their
simplified approach, however, does not
satisfy interply continuity of shear stresses.
This paper presents a finite-element ap-
proach to the problem of deflections in
multilayer-sandwich beams (or plates with
a dominant dimension in plan) when all the
shear deformations have to be accounted
for.

GENERAL THIEORY

Assumptions

1. The weak cores are assumed to pro-
vide resistance to shear deformation only.

2. There is no normal strain in the direc-
tion perpendicular to the span of the beam
and, therefore, all points on the same per-
pendicular have the same vertical displace-
ment.

3. Both the normal and shear strains are
considered in the calculation of the strain
energy contribution of the stiff layers.

4. The position of the neutral axis is
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assumed known because of symmetry of
construction of the plate. This plane is
used as the origin z = 0 to refer the position
of the ditferent layers.

Deformations and strain energy

Consider Fig. 1. The nth layer has a
thickness t, and it is located at a distance z,
from the neutral axis z = 0. After deforma-
tion, points A, B, and C will be located at
A, B, and C'. The displacement u in the x
direction for an arbitrary point C in this
layer can be expressed as

2 4w +u, (1)
dx

u=-

while, according to assumption 2, the verti-
cal displacement of C is the common de-
tlection w. The shear strain y at C is then
given by

du  dw _ _dw

dz  9x dx

du'  dw _ du’
dz dx dz

Y =

and the increment §u* in the displacement
u* between points A” and C’ is, therefore,

z

su(z) :/ ‘ydz‘ 3)

In

It is convenient to change variables from
z to 5 according to

t
2=z, + (1 +n)£ (4)
and Eq. 3 can thus be expressed as

511'(ﬂ)=£2/n7dn &)
2/, _

The shear strain v is constant in the weak
cores, as implied by assumption 1. On the
other hand, the shear strain in the stiff
layers varies with 5 and in a first approxi-
mation this variation can be assumed to be
quadratic. A parabolic shear distribution
is the result of the first-order approximation
made in the ordinary theory of bending of
beams and plates. It is assumed, therefore,
that, in general,

YY) =Yg +an+by’ (6)
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where v is then the shear strain at the
center of the layer.

When the layer is a weak core, the shear
strain is simply given by

When the nth layer is stiff, the neighbor-
ing layers are weak cores with constant
shear strain, and continuity of shear stresses
at the interfaces between these layers pro-
vides two equations for the determination
of the constants a and b in Eq. 6. Thus, for
a stiff layer

G-
v(n)=< (;‘ 1> (7-1) %Vn-l +

n

G 1
(1-72) v, +< (?Jr)(') +1) %711+I

n

(8)

where G, is the shear modulus correspond-
ing to the nth layer.

Assume now that the nth layer is stiff.
Introducing Eq. 8 into Eq. 5 and integrat-

ing,
Gp-1\t
Su (n)= < (fl 1>7
n -~
th 73 2
Tn-l+ z A\ -3+ 3 ), v (9)
2 K : n
Cncd\tnn2 o3 1
Gp J2Z\F 76 12 )"ns1.

The total increment in u* due to shear
deformation of the nth stiff layer is ob-
tained for 4 = 1 in Eq. 9, that is

Gp-1\tn
(/_\u')n=< G % Tn-1 7%

G N\t
2 u+l\ tn
3fnn +< G, > 6

Introducing now Eq. 7 into Eq. 5 and
letting » = 1, the total increment in u* due
to the shear deformation of a weak core is

=1
TN

o

am

n+l |

(Aau)y = tnvn, am

Assume once again that the nth layer is
stiff. The total displacement u for an arbi-
trary point C in this layer is given by Eq. 1.
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The displacement u* for C can be obtained
as the sum of the contributions from all the
stiff and weak layers between the nth and
the neutral axis according to Egs. 10 and
11, respectively. Furthermore, the incre-
ment in u* due to the deformation of the
nth layer itself, as given by Eq. 9, must
be added. That is,

1

. n- )
dw + 'Z] SR A H“,(l) +
i=

dx

nil (;i—l t; s
(\Gp e ittt

Uy =-17

Ghst\ty r;__’+n_3__
Gy /2 \+ "6

where the functions 6,(i) and 6,(i) are
defined such that:
for a weak layer, 6, (i) =1 and 6.(i) = 0;
for a stiff layer, 6,(i) =0 and 6.(i) = 1.
The normal strain ¢, in the nth layer can
now be calculated from

ey =2Un (13)
ax
giving, from Eq. 12,
n- , )
€= —2W' + Y 4 9w(l)+
1=
n-l( Gy t 5 ,
i1 ]( G, Je Y-t P3N
G .
i+l N |
—_— ' »9‘
<(;i>’71 1.5(1)+
(1)
Gn-1\tn Wl s .
Gy J2\6 4 12 /7n-1

L
n-, ot 1y
476 12/7n+l1 .,

If £, and G, are, respectively, the elastic
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moduli for normal and shear strains for the
nth stiff layer, its strain energy per unit
width is given by

. L] Entn 1y
Un :/ t—u /1 e dy +
o -

15)
Gyty /1,
— Y= dy tdx
1 n

4

where L is the span of the beam or plate,
the normal strain ¢, is given by Eq. 14 and
the shear strain y by Eq. 8.

For a weak core and according to as-
sumption 1, the strain energy is due to

shear deformation only. Therefore, from
Eq. 7,

(16)

L Gpty _»
Ln :/ - 7"1" dx
o

The total strain energy U, per unit width
of beam or plate, is given by the sum of
the contributions from individual layers
according to Eq. 15 or Eq. 16, depending
on whether the layer is stiff or weak.

Consider a particular case as shown in
Fig. 2. Layers 1 and 3 are assumed to be
stitf while layer 2 is the weak core; t;, t. and
ty are the corresponding thickness and E,
Ey, Gy, Gy and Gy are, respectively, the
corresponding elastic and shear moduli.
The construction is assumed balanced, and
the neutral axis is thus located on the mid-
plane of the panel. Equations 15 and 16
can be used to obtain the expression for the
strain energy U. The calculations are
tedious, if straightforward, and only the
final result is presented here. The total
energy can be expressed as follows,

L. 9

U :/ { Qr(w")™ + (‘)2 w Yi +
o |

Oy ‘Y;Z + QWY+ ();_)(yi)2 +

L2 D) ,
Qg (1) + Q7 (Y7 + Qe ¥y +

. an
Qg 7+ 01 72_) Yy + Q)+
2 2

Q)+ Q)"+ Q7 7y +

(‘)1372 Yy obdxcs
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where the constants Q; are given in Ap-
pendix 1.

FINITE-ELEMENT ANALYSIS

As shown in Eq. 17, the strain energy
expression contains the second derivative
of the deflection w and first derivatives of
the shear strains. A finite-element dis-

 J

Deformation of the layered system.

cretization must satisfy, for convergence,
continuity in both functions and first deriv-
ative for the deflection w and continuity
of the function for the shear strains. The
beam is partitioned into elements, one of
which is shown in Fig. 3. At each node
the unknowns are the value of the deflec-
tion w, the slope w’, and the value of the
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shear strains in each of the layers. For
the five-layer plate of Fig. 2, five unknowns
are associated with each node.

The variation of w within the element is
specified as cubic, while the variation of
the shear strains is taken to be linear. Both
variations are thus uniquely determined by
the nodal parameters,

(o) (i
26 )y - (- £ )y
and for the nth layer,
7”:<"§>7‘+57 (19)
h ni Ty nj

Using Eqs. 18 and 19, the functions in
energy expression can be written as fol-
lows:

wi= <M >0, Yy = <M >

Y] = <My>b, Y] =<M;> b (20)

Ty =<My>h, Yy = <M >

77; = <‘\IT> o

where {8} is the vector of unknown nodal
parameters

o= (21)

=

and the row vectors <M, > are given by
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<\11> = <_ _(.Z +1.3_5L'_i +()_i,”.”A (),

N N
6 128 2 3
2= 28 0.
h~>  h» h =

h

< . ().—l.(b.(b. 0. ().l.()>
h h

1 1

<My>=1{0.0,0.0.- i 0.0, 0, ()‘ﬂ

1

<M,> = <(), 0, —I—.(), 0. 0.0, ]l L0, ()>
= 1

&
L1=2 0,000, 0,
h

=l
~———

& o
<MA>=[0.0.0.0.1-2,0,0.0.0,>
i h h/

The stiffness matrix [K] for the element
is then a 10 X 10 symmetric matrix with
components k;; given by

-h
kij-_—/ {201 MM QoMM+

(8]
O My My Qo My My £ QMg Mg+

QMM+ QMM

P20 M, ML

i
205 My Moy #2056 5 My -

A (23)
O Moy My + Qg MyjMyg; + Qg Moy My +

Qo Mj M+ QMM yj + QMg M+
2001 Mg Msj + 20 5M Mg+ 2015 M55 Mo 4

Qp Mg Mgy + O MM+ Qs Mg Mo -

Q5 MM }d
: i=1.10
j=1.1i

where, for example, My is the ith com-
ponent of the row vector < M; >.

The components kj; are easily generated
by numerical integration, with a two-point
Gaussian integration scheme sufficient for
the integration of, at most, quadratic poly-
nomials. The assembly of the global stitf-
ness matrix and the solution of the resulting
equations can be carried out with standard
finite-element analysis techniques (Zien-

<
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Fic. 2. Five-layer sandwich bheam configura-
tion.

kiewicz 1971). A completely similar ap-
proach can be followed for layered systems
with more (or less) than the five layers
considered in the particular case studied
here.

APPLICATICN OF THE THEORY TO
SIIEAR DEFLECTIONS?

PLYWOOD

Consider a plywood beam with the parti-
cular lay-up of Fig. 2 and loaded on a
single 12-inch span with a concentrated
load at midspan. The beam width was 2
inches and the load was applied on the
entire width. This case was used to study
the convergence of the finite-element ap-
proach and to verify experimentally the
numerical results. Two tests were made

* A computer program, based on the theoretical
model presented in  this paper and coded in
FORTRAN 1V, is available from the Western
Forest Products Laboratory, Canadian Forestry
Service, 6620 N.W. Marine Drive, Vancouver, B.C.
V6T 1X2 Canada. The program can be used
with 3,5 and 7-ply plywood. Continuous beams
of up to four spans can be studied. Plywood geo-
metric and elastic properties are entered ply by
ply. Output includes the deflected shape, maxi-
mum bending, and rolling shear stresses. The

program is simple to use and full input instruc-
tions are given.

%
|

Z

Fi. 3.
position.

Finite element—original and displaced
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Iic. 4. Finite clement analysis convergence test
for factor «, five-layer Test A specimen.

with the plywood soaked in water until
the moisture content was about 32%. In
test A, all plies were Douglas-fir | Pseudot-
suga mensiesii (Mirb.) Franco]; in test B,
Douglas-fir was used for the face plies and
the center ply only, while white spruce
[Picea glauca (Moench) Voss] was used
for the cores. The individual ply thick-
nesses, obtained as mean of measured
ralues over 36 specimens, are shown in
Table 1.

Table 2 shows the moduli of elasticity for
the soaked plies, determined experimentally
with the exception of G, and Gy (G, for
Douglas-fir). The shear modulus was as-
sumed to be related to Gyr of Douglas-fir
according to Gry = 10 Gyg, a relationship
which approximately holds for a moisture
content of 11.2% (U.S. Forest Service 1953),
(Kollmann and Coté 1968). The ratio be-
tween Gy, and Gy is assumed to remain
constant for higher moisture contents. This

TasLe 1. Mean thicknesses of plies for five-layer
test specimens
Test A Test B
N 36 36
£, (in) 0.102 0.105
t, (in.) 0.099 0.098
ty (in.) 0.101 0.098
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Tasre 2. Moduli of elasticity for five-layer test specimens
Douglas-fir W. spruce
*
= = G
& € G3 E =Eq 2
3 ;
(103 psi) (103 psi) (10° psi) (107 psi)
N 6 - 22 6
Mean 5.29 52.9 1.66 1.43
s 0.94 - 0.22 0.20
€.V (%) 17.8 - 13.3 14.0
95% Conf. 4,21 42.1 1.56 1.20
interval - - - -
for mean 6.37 63.7 1.76 1.66
* Based on GLR / GRT =10 (U.S. Forest Service, 1955).

is shown to be approximately true for Sitka
spruce (Kollmann and Coté 1968). As will
be shown later, the influence of the shear
modulus for the face plies and center is not
great and a very accurate measurement of
this shear modulus is not needed.

Modulus G, was measured using ASTM
Standard Test D-2718 for plywood in
rolling shear; Moduli E; and E; were ob-
tained with ASTM Standard Test D-3043,
Method C, for plywood in flexure under a
pure moment.

In general, the maximum deflection A
can be expressed as the product of the
maximum deflection A, calculated by using
ordinary beam bending theory times an
amplification factor « which accounts for
the shear contribution to the deformation,

A=ald (24)

O

TasLr 3. Constant g for calculation of A.. maxi-
mum deflection due to bending only, using uni-
formly distributed load

Beam Configuration B
L
4 A 0.013021
L L
4 A (.005208
L L L
A A 0.006770
L L L L

0.006324

In the case of a simply supported beam
with a concentrated load at midspan,

B, = B (25)
and P = concentrated load
L = span of the beam
EI = panel stiffness

The panel stiffness EI is computed, as usual
in plywood design, by neglecting the con-
tribution of the weak cores and considering
each stiff layer with its corresponding
modulus E.

Using the mean values for the moduli of
elasticity of Table 2 and the finite element
analysis, the theoretical factor « was ob-
tained for test A for different numbers of

Tavsrr 4. Amplification factor «. Comparison be-
tween experimental and  theoretical results
Test A Test B
N 36 36
Mean 1.323 1.713
s 0.162 0.172
c.v. (%) 12.3 10.0
95% Conf. Interval
for Mean 1.267 - 1.379  1.654 - 1.772

Theoretical Inter—

val for Mean 1.218 - 1.329 1.707 - 1.986
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P
CT T 3T TP PP T e
3
A L L L
CURVE G2 Gy = G3 E|6= Es
REE | (10%psi) | (0% psi) | (10° psi)
| 1.0 52.9 1.66
2 20 52.9 1.66
3 40 52.9 1.66
30. 4 60 52.9 .66
: 5 8.0 52.9 1.66
6 10.0 52.9 .66
7 20 120.0 1.93

FACTOR o

120 18.0
SPAN L

116, 5.

(in)

240

Amplification factor « for 3-span beam, 5-ply plywood panel, using ditferent elastic moduli.
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clements along the span. The results are
shown in Fig. 4, where it is apparent that
convergence is rapidly obtained with few
elements.

Agreement between experimental and
theoretical predictions was tested by com-
parison of the 95%-confidence interval for
the mean factor « measured from tests A
and B and the theoretical interval obtained
using the 95%-confidence intervals for the
mean of the moduli of elasticity as given
in Table 2. Theoretical and experimental
intervals for the mean factor « are shown in
Table 4. The agreement is good, with a
relatively high degree of overlapping.

In the general case of continuous heams
uniformly loaded, the maximum deflection
A can also be expressed as in Eq. 24.
The deflection A, is given, in this case, by

(26)
where  p = uniformly distributed load,
B = constant, given in Table 3 for
different beam configurations.
As a numerical example, consider the
same plywood panel of tests A and B but
in a three-span continuous beam configura-
tion. The deflection A, is obtained from
Eq. 26 and Table 3 and corresponds to the
central deflection in the end span of the
beam. Figure 5 shows the factor « as a
function of the span L and for several shear
modulus G, for the weak core. Other
moduli were kept constant and as given,
for Douglas-fir, by the mean values of
Table 2. It is apparent that large shear
contributions to the deflection develop as
the core is made weaker in shear and that
this effect is more important the shorter
the span. The effect, for this lay-up, of
changing the elastic and shear modulus of
the stiff plies is not very significant, as
shown by comparison of curves 7 and 2 of
Fig. 5. The cores can be made weaker in
shear by either making them thicker or by

R, O. FOSCHI

using a weaker species like white spruce,
two situations that should be considered
in designing lay-ups for use under high
moisture-content conditions.

CONCLUSIONS

A finite-element approach to the prob-
lem of deflection of multi-layered sandwich
beams or plates with layers weak in shear
has been developed. The numerical method
was applied to the case of plywood panels
and shown to converge well, with few ele-
ments needed for reliable results. Theoreti-
cal predictions agree well with experi-
mental measurements in the sense that
confidence intervals for the maximum de-
flection measured in experiments can be
estimated by using the theoretical approach
and taking into account the corresponding
confidence intervals for the elastic moduli.
The influence of weaker cores in the deflec-
tion of plywood panels, through shear de-
formation, has been shown to be significant
and should be taken into account in design
criteria.
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APPENDIX I—CONSTANTS Q:

Leten = (2g + 2y )/2, then 0, = 32 -,rﬁ .
T35
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