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ABSTRACT

A wood cantilever loaded at the free end was analyzed using the anisotropic elasticity theory. This
report presents a two-dimensional numerical example of a Sitka spruce cantilever in the longitudinal–
radial plane. When the grain slope is zero, i.e., the beam axis coincides with the longitudinal axis of
wood, the stresses in the beam and the deflection of the beam are the same as those for an isotropic
beam; when the grain slope is different from zero, the stresses and the deflection can increase signif-
icantly.
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INTRODUCTION

Wood may be described as an orthotropic
material with independent mechanical prop-
erties in the directions of three mutually per-
pendicular axes: longitudinal (L), radial (R),
and tangential (T). These are called the prin-
cipal material axes, and the mechanical prop-
erties referred to them are the engineering con-
stants. The material axes and the geometrical
axes used to describe a rectangular structural
member do not usually coincide. According to
Hoyle, Jr. (1982), the angle between a material
axis and an adjacent geometrical axis can be
as much as 6158. The mechanical properties
referred to the geometrical axes are called the
transformed engineering constants. In a two-
dimensional situation, the relations between
transformed engineering constants and engi-
neering constants, between transformed stiff-
ness and principal stiffness, and between
transformed compliance and principal compli-
ance are well documented (Jones 1975; Tsai
and Hahn 1980).

Kilic et al. (2001) analyzed the effects of

1 The Forest Products Laboratory is maintained in co-
operation with the University of Wisconsin. This article
was written and prepared by U.S. Government employees
on official time, and it is therefore in the public domain
and not subject to copyright.

shear on the deflection of an orthotropic can-
tilever loaded either uniformly or by a single
force at the free end. In their analysis, they
referred the shear effects to the geometrical
axes only, which is of limited interest in the
design of a wood structural member. In wood
engineering, all the independent mechanical
properties are referred to the material axes.

In this study, we investigated the stress dis-
tributions and the deflection curves of an or-
thotropic cantilever loaded at the free end us-
ing the anisotropic elasticity theory by Lekh-
nitskii (1968). The effects of shear on deflec-
tion for several values of grain slope referred
to the material axes are analyzed. Numerical
results are presented for a Sitka spruce (Picea
sitchensis (Bong.) Carr.) cantilever beam.

GENERAL ANISOTROPIC ELASTICITY

Let axes 1 and 2 define the principal ma-
terial plane, with axis 1 in the grain direction
and axis 2 in the radial direction. The geo-
metrical axes x and y are located at the free
end of the beam, with axis x at an angle u from
axis 1 (Fig. 1). Angle u is called the grain
slope. The stress/strain relations in anisotropic
elasticity theory are shown in Eqs. (1) (Tsai
and Hahn 1980):
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FIG. 1. Orthotropic cantilever subjected to single load.
x and y are geometrical axes; 1 and 2 are material axes.
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where the transformed compliances Sij can be
given as
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S 5 Sxs sx

3 3 3 35 2m nS 2 2mn S 1 2(mn 2 m n)S11 22 12

3 31 (mn 2 m n)S66

S 5 Sys sy

3 3 3 35 2mn S 2 2m nS 1 2(m n 2 mn )S11 22 12

3 31 (m n 2 mn )S66

2 2 2 2 2 2S 5 4m n S 1 4m n S 2 8m n Sss 11 22 12

2 2 21 (m 2 n ) S (2)66

with m 5 cos u and n 5 sin u and the principal
compliances

1 1
S 5 S 511 22E E1 2

y y 112 21S 5 2 5 S 5 2 S 5 (3)12 21 66E E G1 2 12

In addition, the strain/displacement relations
are

]u
« 5 (4a)x ]x

]v
« 5 (4b)y ]y

]u ]v
g 5 1 (4c)xy ]y ]x

in which u and v are displacements in x and y
directions, respectively.

DERIVATION OF DEFLECTION CURVES

Stress components at a point (x, y) of a can-
tilever subjected to a single load P at the free
end are (Lekhnitskii 1968)

2P PS bxs 2s 5 2 xy 1 2 yx 1 2I IS 12xx

s 5 0y

2P b
2t 5 2 2 y (5)xy 1 22I 4

where I 5 hb3/12; h and b are the width and
height of beam cross section in Fig. 1. From
Eqs. (1a), (5), and (4a), we obtain

P Sxs2 2 2u 5 2 S x y 1 (b 1 12y )x 1 f (y)xx[ ]2I 12
(6)

From Eqs. (1b), (5), and (4b), it follows

2P b
2v 5 (2S S 2 3S S )y 2 S xyxy xs xx ys xy[2I 12Sxx

(S S 2 2S S )xx ys xy xs 31 y 1 g(x) (7)]3Sxx

Then, from Eqs. (1c), (5) and (4c), we obtain,
by means of Eqs. (6) and (7),

PS P S 1 S Sxx ss xy xs2 2x 1 2 y1 22I I 2 Sxx

2 2Pb S Sxs ss1 2 2 f 9(y) 2 g9(x) 5 0 (8)1 24I 3S 2xx

In Eq. (8), some terms are functions of x only,
some are functions of y only, and one is in-
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dependent of both x and y. Denoting these
groups by F(x), G(y), and K, we have

PSxx 2F(x) 5 x 2 g9(x)
2I

2P S 1 S Sss xy xs 2G(y) 5 2 y 2 f 9(y)1 2I 2 Sxx

2 2Pb S Sxs ssK 5 2 21 24I 3S 2xx

and Eq. (8) may be written

F(x) 1 G(y) 5 K

Since K is independent of x and y, we must
set F(x) equal to some constant d and G(y)
some constant e. Thus,

2 2Pb S Sxs ssd 1 e 5 2 2 (9)1 24I 3S 2xx

and

dg(x) PSxx 25 x 2 d
dx 2I

2df (y) P S 1 S Sss xy xs 25 2 y 2 e1 2dy I 2 Sxx

Functions g(x) and f (y) are then

PSxx 3g(x) 5 x 2 dx 1 j
6I

2P S 1 S Sss xy xs 3f (y) 5 2 y 2 ey 1 k1 23I 2 Sxx

Substituting in Eqs. (6) and (7), we find

P Sxs2 2 2u 5 2 S x y 1 (b 1 12y )xxx[ ]2I 12
2P S 1 S Sss xy xs 31 2 y 2 ey 1 k (10)1 23I 2 Sxx

2P b
2v 5 (2S S 2 3S S )y 2 S xyxy xs xx ys xy[2I 12Sxx

(S S 2 2S S ) PSxx ys xy xs xx3 31 y 1 x]3S 6Ixx

2 dx 1 j (11)

The constants d, e, k, and j may now be de-
termined from Eq. (9) and from the three con-
ditions of constraint that are necessary to pre-
vent the beam from moving as a rigid body in
the xy-plane. Assuming that u and v are zero
for x 5 l, y 5 0, we find from Eqs. (10) and
(11),

2PS PS b lxx xs3j 5 dl 2 l k 5
6I 24I

For determining the constant d in Eq. (11),
we must use the third condition of constraint
to eliminate the possibility of rotation of the
beam in the xy-plane about the center of the
fixed end (Timoshenko and Goodier 1951).
Two possible constraining conditions are con-
sidered:

(1) When an element of the axis of the beam
is fixed at the fixed end, we have

]v
5 0 (12)1 2]x x5l

y50

We obtain from Eq. (11)

PSxx 2d 5 l
2I

and Eq. (11) becomes

2P b
2v 5 (2S S 2 3S S )y 2 S xyxy xs xx yx xy[2I 12Sxx

(S S 2 2S S )xx ys xy xs 31 y ]3Sxx

3 3PS (x 2 l )xx 21 2 (x 2 l)l (13)[ ]2I 3

The deflection curve is obtained by substitut-
ing y 5 0 into Eq. (13). Then,

3 3PS (x 2 l )xx 2v 5 2 (x 2 l)l (14)y50 [ ]2I 3

At the free end,

3PS lxxv 5 (15)x50 3Iy50
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(2) When a vertical element at the fixed end
is fixed, we have

]u
5 0 (16)1 2]y x5l

y50

From Eq. (10) we obtain

2PS lxxe 5 2
2I

The constant d in Eq. (11) is then obtained
from Eq. (9)

2 2 2Pb S S PS lxs ss xxd 5 2 2 11 24I 3S 2 2Ixx

and Eq. (11) becomes

2P b
2v 5 (2S S 2 3S S )y 2 S xyxy xs xx ys xy[2I 12Sxx

(S S 2 2S S )xx ys xy xs 31 y ]3Sxx

2 2PS P b S Sxx xs ss3 21 x 1 2 2 S l xxx1 2[ ]6I 2I 2 3S 2xx

2 2 2Pl S l b S Sxx xs ss1 2 2 (17)1 2[ ]I 3 4 3S 2xx

The deflection curve is obtained from Eq. (17)
with y 5 0.

2 2PS P b S Sxx xs ss3 2v 5 x 1 2 2 S l xy50 xx1 2[ ]6I 2I 2 3S 2xx

2 2 2Pl S l b S Sxx xs ss1 2 2 (18)1 2[ ]I 3 4 3S 2xx

At the free end,

3 2 2PS l Pb l S Sxx xs ssv 5 2 2 (19)x50 1 23I 4I 3S 2xxy50

which is the corrected form of the resulting
equation obtained by Kilic et al. (2001). Note
the first term is identical to Eq. (15).

SHEAR EFFECTS ON DEFLECTION

For an isotropic material, the first term in
Eq. (19) is due to flexural and the second term

to shear (Timoshenko and Goodier 1951). This
approach was also adopted by Kilic et al.
(2001). For an orthotropic material, however,
that is only true when u 5 0. For u ± 0, Sxx

in the first term as well as Sxs and Sss are all
functions of the principal compliances, as
shown in Eqs. (2) and (3). After the trans-
formed compliances are replaced by the prin-
cipal compliances, it is appropriate to separate
the terms containing S66 from those that do not
in Eq. (19) to study the effects of shear on
deflection based on the consideration of me-
chanical properties. For this separation, the
only term that requires special attention is the
ratio S /Sxx.2

xs

For abbreviation, we may write from Eq. (2)

Sxs 5 a 1 bS66

where

3 3 3 3a 5 2m nS 2 2mn S 1 2(mn 2 m n)S11 22 12

3 3b 5 mn 2 m n

and

Sxx 5 g 1 dS66

where

g 5 m4S11 1 n4S22 1 2m2n2S12 d 5 m2n2

We then have
2

b
2a 1 1 S661 2a2 2S (a 1 bS )xs 665 5

S g 1 dSxx 66 d
g 1 1 S661 2g

2a (1 1 X)
5

g (1 1 Y)

2a
5 [1 1 (X 2 Y)

g
2 33 (1 2 Y 1 Y 2 Y 1 · · ·)]

2 2a a
5 1 (X 2 Y)

g g

2 33 (1 2 Y 1 Y 2 Y 1 · · ·) (20)

where
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FIG. 2. Normal stresses (sx) at free end (x 5 0 mm)
for several grain slope values (u).

FIG. 3. Normal stresses (sx) at fixed end (x 5 80 mm)
for several grain slope values (u).

22b b d
X 5 S 1 S Y 5 S66 66 661 2a a g

For zYz , 1 as in the present case, the series
in Eq. (20) converges very quickly. The first
term in Eq. (20) is independent of S66. The
second term containing X and Y is a function
of S66, although they are not devoid of the oth-
er principal compliances.

Equation (19) can now be written

3Pl
4 2 2 4v 5 (m S 1 2m n S 1 n S )x50 11 12 22[ 3Iy50

2 2 2Pb l a Pb l
2 22 1 m n (S 1 S 2 2S )11 22 12 ]12I g 2I

3 2 2Pl Pb l a
2 21 m n S 266[ 3I 12I g

2 33 (X 2 Y)(1 2 Y 1 Y 2 Y 1 · · ·)

2Pb l
2 2 21 (m 2 n ) S (21)66]8I

The first pair of brackets encloses terms with-
out S66; the second encloses terms with S66.

RESULTS AND DISCUSSION

Mechanical properties for Sitka spruce (Liu
2000) are used for numerical calculations: E1

5 11,800 MPa, E2 5 2,216 MPa, G12 5 910
MPa, and n12 5 0.37. The geometrical dimen-
sions and the applied load in Fig. 1 are as

follows: l 5 80 mm, b 5 40 mm, h 5 10 mm,
and P 5 100 N. For the grain slope, the as-
sumed values are 08, 658, 6108, and 6158.

Figure 2 presents the distribution of the nor-
mal stress sx at the free end, x 5 0 mm. For
u 5 08, the stresses are zero as in the case of
an isotropic beam. As u increases from zero,
the stresses distribute parabolically from ten-
sile at the upper and lower edges to compres-
sive in the middle. The absolute values of the
stresses increase as u increases but at a de-
creasing rate. For u . 158, the increases be-
come negligible. When u changes sign, sx also
changes sign for the same value of y. There
are two focal points at y ø 612 mm and sx

5 08, through which all stress curves pass.
These stress curves indicate that for u ± 08,
the free end is no longer flat because the
stresses exist in proportion to the strains.

At the fixed end with x 5 80 mm, the nor-
mal stress sx distributions are shown in Fig.
3. For u 5 08, the stresses fall on a straight
line, as in the case of an isotropic beam, with
sx 5 63 MPa at the upper and lower edges.
As u increases from zero, the stresses form
concaved curves toward the first quadrant of
the figure, crossing the straight line of u 5 08
at two focal points at y ø 612 mm and sx ø
61.8 MPa. At the upper edge of the beam (see
Fig. 1), where y is negative and sx is positive,
the stress increases with u and reaches its max-
imum for any specified value of u; at the lower
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TABLE 1. Deflection of Sitka spruce cantilever.

zuz
(degrees)

Equation (19)a

Flexural
(mm)

Shear
(mm)

Equation (21)b

Flexural
(mm)

Shear
(mm)

0
5

10
15

2.71e-2
2.92e-2
3.53e-2
4.50e-2

3.30e-2
3.13e-2
2.75e-2
2.35e-2

2.71e-2
2.70e-2
2.69e-2
2.71e-2

3.30e-2
3.35e-2
3.60e-2
4.14e-2

a Terms without Sxs and Sss under flexural; others under shear.
b Terms without S66 under flexural; others under shear.

edge where y is positive and sx is negative,
the stress increase reduces its absolute value
and reaches its minimum for any specified val-
ue of u. When u changes from a positive value
to a negative value of the same magnitude, the
corresponding sx and y also change sign but
maintain the same magnitude. Thus, for u 5
158, sx has a tensile stress of 3.7 MPa at the
upper edge of the beam and a compressive
stress of 22.3 MPa at the lower edge; for u 5
2158, it is a tensile stress of 2.3 MPa at the
upper edge and a compressive stress of 23.7
MPa at the lower edge. The change from 63
to 63.7 MPa is 23%. Note that the stresses at
u 5 6158 and 6108 are barely distinguishable.
Thus, in this numerical example, the maxi-
mum increase in normal stress sx due to grain
slope u is 23%.

Results of deflection at the center of the free
end are tabulated in Table 1. Since deflection
is independent of the sign for u, absolute val-
ues for u are used in the table. Deflection ex-
pressed in terms of the transformed compli-
ances referred to the geometrical axes in Eq.
(19) as studied by Kilic et al. (2001) and de-
flection expressed in terms of the principal
compliances referred to the material axes in
Eq. (21) are both calculated. Based on Eq.
(19), the portion of deflection due to flexural
increases with u, but the portion due to shear
decreases with u. Based on Eq. (21), the por-
tion of deflection due to flexural remains es-
sentially unchanged, but the portion due to
shear increases with u. The results based on
Eqs. (19) and (21) are therefore totally incon-
gruous. Since S66 in Eq. (21) is an independent
material parameter, clearly it should be the one

that reflects the effects of shear on deflection
in design consideration. As Table 1 indicates,
deflection related to S66 not only increases with
increasing u, but at an increasing rate. At u 5
08 deflection is 0.033 mm; at u 5 158 it reaches
0.0414 mm, an increase of more than 25%,
and it continues to increase.

In lumber grading, each visual stress grade
has a very specific maximum permitted grain
slope (Hoyle, Jr. 1982). In the design of a
wood cantilever, it seems the maximum allow-
able deflection could be used to limit the max-
imum permitted grain slope in any specified
application, as demonstrated in the numerical
example.

CONCLUSIONS

In this study, we analyzed a cantilever of an
orthotropic material with a single load at the
free end, as shown in Fig. 1. Numerical cal-
culations based on the mechanical properties
of Sitka spruce in the longitudinal–radial plane
revealed the following:

1. When the beam axis and longitudinal axis
coincide, i.e., the grain slope u is zero, the
stress distributions in the beam and the de-
flection curve of the beam are practically
the same as those for an isotropic beam (Ti-
moshenko and Goodier 1951).

2. When the grain slope is zero, the free end of
the beam remains flat; when it is different
from zero, the free end becomes concave or
convex depending on the sign for u.

3. When the grain slope is zero, the bending
stress curve at the fixed end is linear with
a positive value at the upper edge and a
negative value of equal magnitude at the
lower edge; when it is different from zero,
the stress curves become nonlinear, cross-
ing the straight line for u 5 08 at two focal
points. The stresses at the upper and lower
edges may increase or decrease depending
on the sign for u. These changes can be
significant, depending on the beam geom-
etry, the material properties, and the ap-
plied load.
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4. The deflection curve of the beam is inde-
pendent of the sign for u. At the center of
the free end, deflection increases with in-
creasing u and at an increasing rate be-
tween the considered range of 08 # u #
158. The increases are due to the terms con-
taining the principal compliance S66, the in-
verse of the shear modulus G12. We note
that these observations are based on the as-
sumption that E1 in tension is equal to E1

in compression.
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