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ABSTRACT 

Methods are presented Sor calculating limit state probabilities of engineered wood structural mem- 
bcrs, considering load duration effects due to stochastic dead and snow load. These methods are used 
to conduct reliability studies of existing wood design criteria. When realistic load processes are con- 
sidered, it is found that the importance of load duration and gradual damage accumulation has been 
somewhat overstated. One possiblc probability-based design method that should be useful in future 
code development work also is presented. 

Kejwords: Buildings; damage accun~ulation; design; duration of load; limit states; loads; probability; 
reliability; snow: statistics; structural engineering; wood. 

INTRODUCTION 

Structural design for engineered wood structures is expected to evolve over the 
next several years from traditional working stress design toward criteria based on 
concepts of probability-based limit states design (PBLSD) (Ellingwood et al. 1982a; 
Galambos et al. 1982; Itani and Faherty 1984). In contrast to working stress 
design, PBLSD provides for consistent levels of performance from one design 
application to the next. As a naturally occurring construction material, wood 
presents problems that have not yet been encountered in developing PBLSD for 
steel and for reinforced concrete construction (ACI 1983; AISC 1986). The strength 
of wood is highly variable and is dependent on the rate and duration of load 
(Madsen 1975). Wood member design strength also depends on the grading pro- 
cedure (visual or mechanical), species, and member size. 

The dependence of the strength of wood structural members on load history 
means that the variation of structural loads in time must be modeled realistically. 
Moreover, the possibility that failure may occur by progressive accumulation of 
damage under loads that vary continually in time, rather than by overloading, 
must be considered. The analysis of damage accumulation in wood structures and 
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the development of PBLSD require: (1) descriptions of loads as stochastic pro- 
cesses; (2) probabilistic models of strength; (3) models to evaluate the damage 
accumulation process; (4) reliability analysis methods to synthesize load and 
damage accumulation data; and ( 5 )  practical formats for risk-consistent limit states 
design. With these tools, practical PBLSD criteria for wood structures can be 
developed to be consistent with code performance objectives stated in probabilistic 
terms. This paper illustrates these concepts for flexural members supporting a roof, 
where dead and snow loads constitute the significant structural load requirements. 

STOCHASTIC MODELS OF DEAD AND SNOW LOAD 

A stochastic characterization of the entire load process is required in order to 
evaluate damage accumulation and limit state probabilities. Stochastic process 
models describe the spatial and temporal variation of structural loads. The dead 
and snow loads described here are assumed to be statically equivalent uniformly 
distributed loads (Ellingwood et al. 1982a; Galambos et al. 1982), in which the 
spatial variation of the actual load is taken into account. 

Dead load 

The dead load, D, arises from the weight of permanent construction, attach- 
ments, and equipment. The dead load is assumed to be random in intensity but 
invariant in time, and thus can be modeled by a random variable. The mean 
value of D, m,, approximately equals the nominal value of dead load, D,, in 
situations where the nominal load is calculated by the designer from the densities 
and dimensions of permanent construction (ANSI 1982). The coefficient of vari- 
ation in dead load, V,,, is about 0.10 (Galambos et al. 1982). The dead load can 
be modeled by a normal probability distribution. 

Snow load 

Snow loads on roofs depend on the local climate and on the roof exposure, 
geometry and thermal characteristics. A simple stochastic model of roof snow 
load, S,(t), is given by, 

= C,(t> S,(t) (1) 

in which S,(t) = ground snow load process, which is determined from analyzing 
basic climatological data (Ellingwood and Redfield 1983), and C,(t) = ground-to- 
roof conversion factor, which depends on the characteristics of the roof (O'Rourke 
et al. 1982). 

Records of daily water-equivalents of ground snow are maintained by the Na- 
tional Oceanic and Atmospheric Administration. In contrast to data on snow 
depth, these water-equivalents can be converted directly to load without consid- 
ering the density of snowpack, which is highly variable. Moreover, the data reflect 
the additional weight of rain from occasional winter rainstorms. Daily water- 
equivalents for the years during which such records have been maintained in 
Minneapolis, MN (1 952-1 983) are shown in Fig. 1. The seasonal nature of snow 
causes the snow load process to equal zero for a relatively predictable period of 
the year. This aspect of the snow load process is assumed to be deterministic, and 
the snow loads in Fig. 1 actually are shown for a reduced 182-day year. 

The majority of snow load data analyses have been concerned with the prob- 



252 WOOD AND FlBER SCIENCE, APRIL 1988, V. 20(2) 

MINNEAPOUS, MINNESOTA 
SNOW ACCUMULATION 

wow WON (NOVEMBER - APRIL] 

FIG. 1. Ground snow water-equivalents measured at Minneapolis, Minnesota, 1952-1983. 

ability distribution of the annual extreme ground snow load, S,,, which is im- 
portant in structural code development (ANSI 1982). Analyses of these annual 
extremes (Ellingwood and Redfield 1983) has revealed that the lognormal distri- 
bution, 

in which X and { = mean and standard deviation of the natural logarithm of the 
random variable, and = standard normal probability distribution, provides a 
good fit to the annual extremes at a majority of the stations in the northeast 
quadrant of the United States. 

The annual extreme roof snow load, S,,, is related to annual extreme ground 
snow load through a conversion factor, C,, as follows (O'Rourke et al. 1982): 

The factor C,  includes, in a rudimentary fashion, the effects on snow load of roof 
exposure to wind, melting and evaporation, and spatial correlation. Analyses of 
field measurements of snow accumulation for uniform snow loads on semi-shel- 
tered flat roofs (the standard case in ANSI Standard A58 [1982], for which the 
design conversion factor equals 0.7) indicated that Cd can be modeled as a log- 
normal distribution with a median of 0.47 and a coefficient of variation of 0.42 
(O'Rourke et al. 1982). Thus, the annual extreme roof load is a lognormal random 

TABLE 1. Statistics of annual extreme roof snow load described by lognormal distribution 

Ground Roof 

Station A, f. i. L m5.. VS- S.* m,/S. 

Green Bay, WI 0.410 0.776 -0.345 0.882 5.4 1.09 28 0.19 
Rochester, NY 0.815 0.594 0.060 0.727 7.2 0.84 28 0.26 
Boston, MA 0.585 0.585 -0.170 0.720 5.7 0.82 21 0.27 
Detroit, MI -0.064 0.630 -0.819 0.757 3.1 0.88 20 0.16 
Omaha, NB -0.062 0.715 -0.817 0.829 3.2 0.99 20 0.16 
Cleveland, OH -0.104 0.581 -0.859 0.717 2.8 0.82 15 0.19 

* S,, determined according to ANSI Standard A58.1-1982. 
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FIG. 2. Bernoulli pulse process model. 

variable, since it is the product of two lognormal random variables. Considering 
the stations in Table 1, the mean of S,, typically is about 0.2Sn, and its coefficient 
of variation, V,,,, averages about 0.87; S, = nominal roof snow load defined in 
Ref. 1. 

The appearance of typical snow load records (e.g., Fig. 1) suggests that the 
temporal variation in snow load can be modeled stochastically, to good approx- 
imation, by treating the load as an intermittent pulse process (Turkstra and Mad- 
sen 1980). The simplest pulse process model is a Bernoulli pulse process (illus- 
trated in Fig. 2). The duration, T ,  of each pulse is assumed constant but nonzero 
load intensities occur at random during the snow season. The pulse intensities 
are assumed to be statistically independent and identically distributed random 
variables, with distribution F,(x). At any time, the pulse intensity is assumed to 
be nonzero with probability, p. At Minneapolis, for example, analysis of 3 1 years 
of snow data indicates that p = 0.4. The distribution, FmaX(x), of the maximum 
load intensity during any period, T, is related to the distribution of pulse intensity 
by (Turkstra and Madsen 1980), 

Fmax(x) = [(I - P) + pFi(x)IT" (4) 

in which T is an integer multiple of 7. Knowledge of F,(x), p and T is sufficient to 
characterize the snow load process in a probabilistic sense. 

The distribution of the annual extreme roof snow load is considered to be 
benchmark information. It is the basis of code-specified snow loads and, as such, 
is derived from statistical data that have been thoroughly analyzed (Ellingwood 
and Redfield 1983; O'Rourke et al. 1982). Setting T equal to 1 year, F,,,(x) in 
Eq. 4 describes a lognormal random variable, with (on average) mSra = 0.2Sn and 
Vsn, = 0.87 as described above. The distribution of individual pulse intensities 
can be obtained by fixing p and T and solving Eq. 4 for F,(x). A sample function 
of S,(t) simulated from F,(x) so obtained is shown in Fig. 3, assuming that T = 

30 days and p = 0.4. The similarity of Figs. 3 and 1 may be noted. The pulse 
duration, 7, must be selected to model the variation in time of the snow load 
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FIG. 3. Simulated snow load pulse process sample function for Minneapolis. 

process (e.g., Fig. 1) with sufficient accuracy for damage accumulation analysis. 
The sensitivity of damage accumulation and limit state probabilities to load pulse 
parameters p and 7 will be examined subsequently. 

STRUCTURAL RESISTANCE 

Structural members considered in this study are glued-laminated (glulam) beams 
that are assumed to be part of the main load-bearing system of a roof. Such 
members are of interest because they are engineered in a manner similar to steel 
and concrete beams and compete as alternate framing systems. Most of the avail- 
able data for glulam members are derived from flexural tests of simply supported 
beams. Since many glulam beams are designed as simply supported, the statistics 
obtained from these laboratory tests are indicative of beam behavior in a structure. 
The flexural strength is defined by the modulus of rupture, F,. The load tests 
usually are conducted by loading the beams to failure over approximately 5-10 
min. 

Two glulam beam data sets of flexural strength are used in this paper. The first 
data set (Data Set MM) is comprised of 73 glulam beams reported by Moody 
(1977) and 30 beams reported by Marx and Moody (1981), as summarized in 
Table 2. These data are biased for their structural grades since the 103 beams 
were specifically fabricated to represent beams with near-minimum load carrying 

TABLE 2. Modulus of  rupture tests of 103 glulam beams. 

Beams 9 

a) From Table IV-2 of Moody (1977). 

A0 1 -A04, A06-A 1 5 2,000 
BOI-B09, Bl I-B15 2,200 
C01-C15 2,200 
4 1-50 2,400 
86-90 1,600 
9 1-95 2,000 
96-105 2,400 

b) From Marx and Moody (1981). 

F01-F30 
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FIG. 4. Three-parameter Weibull probability distribution of modulus of rupture data from data 
set MM. 

capacity. The moduli of rupture of all 103 beams were adjusted to standard 
conditions: for size, to 12-inch deep beams; for moisture content, to 12%; and 
for method of loading, to a uniform load and a 21: 1 span depth ratio. The test 
results were normalized by the allowable bending stress, F,, at standard conditions, 
and a three-parameter Weibull probability distribution was fit to the data. The 
three-parameter Weibull cumulative distribution function (cdf) is 

where y, 7, and x,, are, respectively, the shape, scale and location parameters of 
the Weibull distribution. For the above 103 beams, x, = 0.866F,, 7 = 2.776Fh, 
and y = 4.087. The corresponding mean and coefficient of variation are 2.60Fh 
and 0.18. Figure 4 shows these data on a Weibull probability plot. 

An unbiased glulam beam data set (Data Set SF) is obtained from a paper by 
Sexsmith and Fox (1978). Their data are comprised of 56 glulam beams, the test 
results ofwhich have been adjusted for this study to the standard conditions noted 
above. A two-parameter Weibull distribution (x, = 0) was found to fit their data 
best, with 7 = 3.393F,,, and y = 6.817. The corresponding mean and coefficient 
of variation are 3.17Fb and 0.17, respectively. These data are plotted in Fig. 5. 

Note that both glulam beam resistance data sets describe short-term flexural 
strength distributions (i.e., no load duration effects). 

LOAD DURATION MODELS 

The strength of wood depends on the rate at which load is applied and the time 
that it is held at a constant intensity. One of the earliest attempts to model load 
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FIG. 5.  Two-parameter Weibull probability distribution of modulus of rupture data from data 
set SF. 

duration was the "Madison" curve (Wood 195 l) ,  shown in Fig. 6. In Fig. 6, the 
stress ratio, u, is the applied stress divided by the stress causing failure in a 
conventional strength test of 5-1 0 min duration. The Madison curve is based on 
tests of small clear specimens subjected to various levels of constant applied stress. 
The basic allowable stress (e.g., AITC 1980) is based on the assumption that the 
cumulative duration of stress level corresponding to design live load is 10 yr. 
Current adjustments to the allowable stress for combinations involving other loads 
are based on the Madison curve; thus, for example, the 15% increase allowed for 
load combinations involving snow load corresponds to an assumed cumulative 

EDRM M 

~ f l  Time to Failure (days) 

FIG. 6. Damage accumulation models. 
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duration at design snow load of about 2 months rather than 10 yr. However, it 
has been observed that the Madison curve may not model load duration effects 
properly in members of structural size (Barrett and Foschi 1978; Gerhards and 
Link 1983; Madsen 1975). 

Failure of wood structural components appears to occur by progressive accu- 
mulation of damage (creep rupture) (Barrett and Foschi 1978; Gerhards and Link 
1983). Damage is measured by a state variable, a(t) (Miner 1945) which is assumed 
to increase monotonically under load. In the undamaged condition, a(t) = 0, while 
failure occurs by definition when u(t) = 1 .O. The rate at which damage accumulates, 
da/dt, is postulated to be a function of the applied stress history. For example, 
the damage rate implicit in the Madison curve, assuming linear damage accu- 
mulation, is, 

d a  
- -  - A(a - a,)' 
dt 

in which A, B and a, = experimental constants determined from test data; A = 

1.5 x lo4 day- ', B = 2 1.6 and a, = 0.18. The parameter a, defines a damage 
threshold; if a is less than a, then no damage occurs. 

Recent research indicates that the damage rate can be defined as (Gerhards and 
Link 1983, 1986), 

d a  
- - - exp(-A + Ba) 
dt 

Equation 7, called the exponential damage rate model (EDRM), does not include 
a damage threshold. Based on tests of Select Structural (denoted as SS) lumber, 
A = 40 In(day) and B = 49.75 (Gerhards and Link 1986); for Douglas-fir 2 x 4's 
with edge knots on the tension side (denoted as EK), A = 21.72 ln(day) and B = 

26.95 (Gerhards and Link 1983). These two load duration curves are compared 
to the Madison curve in Fig. 6. Load duration data typically are scattered about 
models such as those in Fig. 6, indicating some uncertainty associated with the 
model itself. A portion of this scatter is simply due to variability in F,. The 
'equalrank' assumption (Murphy 1983) made in the sequel ascribes the variability 
in time to failure under constant stress to variability in F,. Any variability in time 
to failure under constant stress due to the model itself is assumed to be small in 
comparison. Other recent load duration models have postulated the existence of 
a damage threshold (Barrett and Foschi 1978; Foschi and Barrett 1982). The 
damage threshold stress ratio has been assumed to lie between about 0.2 and 0.5. 
The question ofwhether a damage threshold in wood exists currently is the subject 
of debate within the wood research community (Itani and Faherty 1984). 

Figure 6 shows the extreme sensitivity of the time to failure at constant stress 
to small changes in applied stress; this sensitivity arises from the magnitude of B 
in Eqs. 6 and 7. All the damage models in Fig. 6 are fairly close to one another 
at stress ratios above about 0.75; most load duration data also lie within this 
range (Barrett and Foschi 1978; Foschi and Barrett 1982; Gerhards and Link 
1983, 1986; Wood 195 1). 

LIMIT STATE PROBABILITIES 

As the structural loads and applied stresses vary randomly in time, damage a(t) 
accumulates stochastically. Linear cumulative damage analysis similar to that 
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used to analyze metallic fatigue can be used to provide a useful (albeit empirical) 
definition of the limit state for glulam beams. Using this approach, 

in which the increment of damage occurring during time interval Ati at stress ratio 
u, is, 

A@, = At, exp(-A + Ba,) (9) 

assuming that the damage rate is defined by Eq. 7. When t = T,, the specified 
usable life of the structure or some other convenient reference period, the accu- 
mulated damage is cu(T,). Failure occurs during the reference period when a(T,) = 

1 when t i T,. 
When a structural member becomes unfit for its intended purpose, it is said to 

have reached a limit state. Limit state functions (or failure functions) are derived 
from principles of mechanics and experimental data. The failure condition is 
given in the form (Ellingwood 198 1, 1982a, b), 

in which X, = resistance or load variable. Thus, the cumulative damage limit 
state for wood members is defined as, 

The limit state probability, P,, is obtained by integrating the joint probability 
density of the load and resistance variables over that region of (X,,X,, . . . ,X,) 
where g(X) 5 0 (Ellingwood 198 1). Because of the complex way that damage in 
wood structural elements accumulates stochastically under random loads, closed- 
form solutions for P, usually cannot be obtained without making untenable sim- 
plifying assumptions. Therefore, the limit state probabilities in this study were 
obtained by Monte Carlo simulation. A reference period of TL = 50 yr was used 
in all cases. A snow load process sample function was simulated from the distri- 
butions described earlier, a glulam beam was selected randomly (i.e., a value of 
F,/F,), and cumulative damage was evaluated using Eqs. 8 and 9. Characteristics 
of damage accumulation were evaluated, as described subsequently. If a(T,) = 1, 
a failure was recorded. This process was repeated a large number of times (6,000 
or more), and the probability of failure was estimated as the number of failures 
divided by the number of simulations. Finally, a reliability index was estimated 
as (Ellingwood et al. 1982b; Hendrickson et al. 1987) 

p = V l ( l  - P,) (12) 

in which c P '  = inverse of the standard normal probability distribution. The index, 
p, often is used as an alternate to P, as a measure of reliability. 

RELIABILITY ANALYSIS OF EXISTING CRITERIA 

The snow load processes, resistance statistics, and damage accumulation models 
described above are used to evaluate limit state probabilities and reliability indices 
for individual simply supported glulam beams designed to support a roof in the 
northern United States. Load sharing is not addressed explicitly, and failure of a 
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beam does not necessarily imply failure of the roof structure. The nominal snow 
load, S,, is assumed to be 20 psf (1.0 kPa) and the nominal dead load, D,, is 5 
psf (0.24 kPa). 

The stress ratio, oi, needed to evaluate damage probabilities for these beams 
can easily be determined according to whatever design criteria are used. The stress 
ratio is the applied stress divided by the modulus of rupture, a, = F,/F,, where 
F, is, 

in which c = analysis factor, D and Si = random dead and snow loads, and Z is 
the section modulus in bending. If the beam is designed according to existing 
allowable stress procedures, then Z is, 

Thus, the stress ratio, a,, during an interval of time, Ati is, 

The statistics of D, S, and F, have been presented earlier. 
Analyses of reliability associated with existing criteria were performed to assess 

the effects of (1) stochastic snow pulse model characteristics and (2) different 
resistance data sets and load duration models. Table 3 compares reliability esti- 
mates for beams subjected to simulated snow load processes with different pulse 
durations. Since it is not known exactly what pulse duration is best to use in the 
Bernoulli pulse model, a range of durations from 2 weeks to 2 months was in- 
vestigated. The results in Table 3 show that the choice of pulse duration is not 
critical; thus, for the remaining analyses, the pulse duration was taken to be 1 
month. Table 3 also includes an analysis for which the probability, p, that the 
pulse intensity is nonzero is 1.0 rather than 0.4. Since the reliability estimates are 
nearly the same for the two values of p, the choice of p also is considered non- 
critical. The lack of sensitivity of the limit state probabilities (reliabilities) to the 
temporal parameters p and 7 of the snow load process derives from the highly 
nonlinear characteristics of the damage rate models. The relation of damage 
increment to stress ratio in forms such as Aa, cc a,B or Aa, cc exp(Ba,), with B 
ranging from 20 to 50 (Foschi and Barrett 1982; Gerhards and Link 1983, 1986; 
Wood 195 l), means that small changes in a, cause variations in Aa,  of several 
orders of magnitude, and that Aa, increases from 0 to 1 over a very narrow range 
of a,. 

Table 4 compares reliability estimates obtained using the two resistance data 
sets, and two load duration models, EDRM SS and EDRM EK, described pre- 
viously. As expected, reliability indices are lower for resistance data set MM (based 
on near-minimum grade beam specimens) than for data set SF, and are lower 
using the EDRM EK model (based on bending specimens with edge knots) than 
when using the EDRM SS model. The failure rate for the minimum quality beams 
is about four times that for the good quality beams. 

The stochastic nature of damage accumulation in the beams during a period 
TL = 50 yr is illustrated conceptually by the sample functions of a(t) in Fig. 7. In 
Fig. 7a, a(t) < 1, and failure does not occur. Figure 7b illustrates the situation 
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TABLE 3. Reliability measures as a function of pulse characteristic.* 

Pulse duration Probability that pulse is on PF P 

2 weeks 0.4 0.0156 2.16 
I month 0.4 0.0168 2.13 
1 month 1 .O 0.0 176 2.1 1 
2 months 0.4 0.0186 2.09 

* Data set SF and EDRM SS load durat~on model. 

where damage accumulates gradually as a consequence of several load pulses, 
each with sufficient magnitude to cause measurable damage. Finally, Fig. 7c shows 
a case where the occurrence of one large load pulse is sufficient to fail the beam. 
In a sense, the latter case represents an 'overload' failure, although damage ac- 
cumulates during the single load pulse causing failure. 

Gradual damage accumulation (Fig. 7b) is relatively uncommon. The last col- 
umn of Table 4 gives the percentage of failed beams that failed due to the ac- 
cumulated effect of two or more snow load pulses. The marginal beams (data set 
MM, EDRM EK) provided the strongest example of damage accumulation, where 
27.1% of the failed beams failed after two or more load pulses; however, only 
3.7% of those failing did so after 4 or more pulses, and only 0.3% failed after 7 
or more pulses. For the more typical quality beams (data set SF, EDRM SS), only 
7.3% of those failing did so under the accumulated effect of two or more snow 
load pulses. Table 4 shows that in all cases considered, the most common type 
of failure is that illustrated in Fig. 7c. 

The relative unimportance of gradual damage accumulation (Fig. 7b) as a failure 
mechanism has the same explanation as the insensitivity of P, (or P )  to the 
temporal characteristics of the snow load process noted above, i.e., the highly 
nonlinear relation between dculdt and a. Thus, it seems that the importance of 
progressive damage accumulation as a failure mechanism in wood may have been 
overstated when the behavior of wood beams subjected to realistic snow load 
processes is considered. The cases studied above reveal that the characteristics of 
the maximum load pulse to occur in 50 yr determine to a large extent whether 
or not failure occurs. 

PRACTICAL PROBABILITY BASED DESIGN 

American National Standard A58 (1 982) contains a set of load factors and load 
combinations for use in limit states design. The loading criteria were derived from 
statistical modeling and analysis of common structural loads, and are appropriate 
for all construction materials. Common loading requirements for all construction 

TABLE 4. Reliability Measures for Dlferent Resistance Data Sets and Load Duration Models." 

Load 
duration 

Reslslance data set model 

Percent of failed 
members that failed 

due to two or 
P, B more pulses 

MM EDRM SS 0.0443 1.70 9.3 
MM EDRM EK 0.0640 1.52 27.1 
SF EDRM SS 0.0168 2.13 7.3 
SF EDRM EK 0.0248 1.97 21.5 

* Pulse duration = I month, prob (pulse is on) = 0.4. 
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(b) Gradual damage accumulation 

a 

1 

I I 
I 

C 

materials are an essential feature of the changeover to limit states design. Ulti- 
mately, their use will simplify design, will encourage competition among con- 
struction technologies, and will facilitate the use of innovative structural systems 
where construction materials may be mixed. A partial listing of the A58 load 
combinations, denoted by U, is 

time 
(a) No failure T 

L 

a 
1 - 

< 

U = 1.2Dn + 1.6(Ln or S,) (164 
U = 1.2Dn + 1.3 W, + 0.5 L, (16b) 

in which D,, L,, S,, and W, are nominal dead, live, wind and snow loads (ANSI 
1982). 

The limit states design requirement using these load criteria would be (Elling- 
wood 1982b), 

qL 6ime 

(c) Sudden.damage accumulation (overload) 

FIG. 7. Classification of damage accumulation mechanisms under stochastic snow load. 

t 1 
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Design resistance (R,) 2 Effect of U 

The design resistance must be selected so as to be compatible with Eqs. 16. R, 
can be set to yield designs in which different structural components have the level 
of uniform reliability desired by a wood specification committee. 

The design resistance in Eq. 17 is calculated using nominal values of material 
strength taken from nationally recognized standards (AITC 1980) and dimensions 
in formulas derived from accepted principles of structural mechanics. Resistance 
factors are included in the computation of R, to account for inherent variability 
and other uncertainties that may cause unfavorable deviations ofthe actual strengths 
from the design value. It should be emphasized that the reliability obtained from 
a particular design resistance depends on both the nominal strength and the 
resistance factors (Ellingwood 1982b). 

The design resistance, R,, is obtained by multiplying the specified nominal 
resistance, R,, by a resistance factor, 4, on structural action and a load duration 
factor, A: 

The resistance factor, @, depends on the nature of the particular limit state of 
interest (e.g., flexure, compression) and the consequences to the structure of a 
member reaching that limit state. The factor, A, takes into account the fact that 
adjustments to R, are necessary if the structure is to have the same reliability for 
combinations of loads with different temporal characteristics. Equations 16-1 8, 
taken together, comprise a "load and resistance factor design" (LRFD) format 
similar to that already adopted by the steel and concrete industries in the United 
States for limit states design (ACI 1983; AISC 1986). There is a second format 
for design resistance, termed the partial material factors approach, in which factors 
are applied directly to each strength variable (e.g., modulus of rupture) rather than 
to structural action, R,. This second approach has advantages in reinforced con- 
crete or masonry construction, where composite action of different materials is 
important, but has fewer advantages for steel or wood construction (Ellingwood 
1982b). 

It is suggested that the nominal strength of a wood structural member, R,, be 
based on the 5% exclusion limit strength obtained in a conventional strength test 
(ramp loading to failure in 5-10 min). There are historical reasons for this selec- 
tion, as the current allowable stress is purported to be based on a 5% exclusion 
limit. It also is advantageous to base nominal strength on a quantity that can be 
determined directly from laboratory testing. Resistance factors compatible with 
this nominal strength result in a set of design requirements that are similar in 
appearance to those already obtained for steel and reinforced concrete (ACI 1983; 
AISC 1986). 

As an example of the use of Eqs. 16-1 8, the safety check for designing beams 
in a roof structure to withstand dead and snow load would be. 

in which F,, = 5% exclusion limit of modulus of rupture, adjusted for size, Z = 

section modulus in bending, 4,= resistance factor for flexure and A, = load duration 
factor for combinations involving snow load. The factors 4, and A, must be de- 
termined so that beams designed by Eq. 19 have the level of reliability desired 
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I EDRM SS Load Duration Modal 

FIG. 8. Variation of 6 as a function of overall resistance factor using resistance data set SF. 

by the code committee. The factor A, accounts for snow load duration effects, 
while 6,  reflects inherent variability in short-term flexural strength. 

Factors 6, and A, can be determined as follows. First, a set of representative 
beams (different span-depth ratios, S,/D, ratios, grade, etc.) is designed as a 
function of 4,A,. The variation in reliability index, 0, with $,A, when creep rupture 
is taken into account is illustrated in Fig. 8. As expected, P decreases as $,A, 
approaches 1. Second, the reliability of the same beams is evaluated ignoring 
creep rupture. This second evaluation parallels that followed in developing LRFD 
for steel and reinforced concrete structures (Ellingwood et al. 1982a; Galambos 
et al. 1982), in which the limit state is reached if the maximum applied moment 
in 50 yr exceeds the (short-term) modulus of rupture. A second relation between 
&A, and p is obtained, which lies above the curve obtained when creep rupture 
was considered (see Fig. 8). In the second case, however, A, = 1 .O, by definition, 
since failure by creep rupture is ignored. Thus, if the target reliability is set at Po, 
4, and A, can be determined as the ratios of the two curves in Fig. 8. For example, 
if p,, = 2.5, then $, for overload = 0.89, A,$, for creep rupture = 0.64 and so A, = 

0.64/0.89 = 0.72. 
Factor $ in Eq. 18 depends on the limit state and thus would be different from 

4, for safety checks involving shear or compression (stability) limit states. Factor 
A in Eq. 18 would equal A, for all limit states involving snow load as the principal 
variable load in the load combination. On the other hand, if the principal variable 
load in the controlling load combination were occupancy live load, then the 
appropriate value of A in Eq. 18 would be different from A, because live and snow 
loads have different temporal characteristics. However, the same set of $-values 
would be used for flexure, shear and compression, regardless of which load com- 
bination governed. 

SUMMARY AND CONCLUSIONS 

Probability-based limit states design criteria can be developed for engineered 
wood construction. The design criteria are in an LRFD format similar to that 
used for steel and reinforced concrete construction. The design resistance is checked 
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against the effect of load combinations specified in ANSI A58 (1982). The design 
resistance is determined as the product of a specified nominal material strength 
( 5 %  exclusion limit of the distribution of short-term strength), a resistance factor, 
9, to account for variability in strength (4  depends on the limit state being checked), 
and a factor, A, to account for the effects of load duration (A depends on the load 
combination being considered). 

Reliability analyses of existing criteria utilizing a linear cumulative damage 
model reveal that assumptions regarding the duration and probability of occur- 
rence of load pulses in the stochastic model for snow loads are not critical. Re- 
liability measures are also relatively insensitive to different load duration models. 
Damage accumulates mainly during the largest snow load pulse, although more 
load pulses may contribute when either the resistance data or load duration model 
are based on relatively weak material. 
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