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IABSTRACT

An exact solution of stress for each layer of cell wall under tension has been obtained by

considering wood fiber as a hollow ¢
results of stresses and the relative angle

mposite anisotropic circular cylinder.
of twist of a single fiber, as well as the values of

Numerical

each layer of the cell wall, are given for six hypothetical wood fibers.

Notation
o) Normal stress in jth layer
o Shear stress in jth layer
P Tensile force at ends
a; Radius of fiber at the outer edge
of jth layer
ABC.D,
EF Unknown constants
el Compliances of jth layer
BonD Coefficients of deformation of jth
layer
9 Displacement in jth layer
E; Young’'s moduli
Gij Moduli of rigidity
ij Directional Poisson’s ratios
T Torsional rigidity of a single fiber
T Torsional rigidity of jth layer
Diotar Total relative angle of twist of a
single fiber
R Stress functions

INTRODUCTION

In recent years, considerable effort has
been expended in the development of fiber
mechanics, and as a consequence, the mc-
chanical behavior of the cell wall has be-
come very important. The problems in

1 The investigation reported in this paper (No.
71-8-13) is in connection with a project of the
Kentucky Agricultural Experiment Station and is
published with the approval of the Director.
Funds for this research were made available under
the provision of the Mclntire-Stennis Cooperative
Forestry Research Program of the U. S, Department
of Agriculture. The author is indebted to this
agency and to the Kentucky Agricultural Experi-
ment Station for their support on this project.
The numerical analysis was completed on the
facilities at the University of Kentucky computing
center.
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general may be classified as follows: (1)
determination of the elastic constants of
crystalline cellulose on the microscopic
level; (2) determination of the elastic con-
stants of the cell wall on the microscopic
level; and (3) stress distribution on each
layer of the cell wall when the fiber is
deformed.

The first problem has been extensively
studied by many authors ( Gillis 1969; Gillis,
Mark, and Tang 1969; Jaswon, Gillis, and
Mark 1968; Lyons 1959; Mark et al. 1969;
Meredith 1946; Sakusada, Nukushina, and
Ito 1962; Treloar 1960). In dealing with
the second problem, several authors have
used the concept of layered system (Cave
1968; 1969; Gillis 1970; Mark 1967; Mark
and Gillis 1970; Schniewind 1969; Schnie-
wind and Barrett 1969). Literature in the
third category, however, is limited. As is
known, the theoretical study of stress in
each layer of the cell wall is restricted in
two-dimensional analysis by cutting an ele-
ment from the wall of tubular wood fiber
(Mark 1967; Mark and Gillis 1970; Schnie-
wind 1969; Schniewind and Barrett 1969 ).
It is quite obvious that a significant change
of stress in each layer of the wall will arise
when considered as a three-dimensional
system. This has been demonstrated by the
experimental testing of a helically reinforced
plastics pipe (Mark 1967). The rotation
test of a simple fiber (pine) under tension
has been reported by Mark and Gillis
(1970). No literature on the theorctical
analysis of twisting of a single fiber has
been found by the author.

In this paper, the stresses and the relative
angle of twist on each layer of cell wall are

10



ANALYSIS OF ELASTIC BEHAVIOR OF WOOD FIBER

-
4 \

M+P layer
S, layer

Fic. 1.

Schematic diagram of the problem.

calculated by considering the wood fiber as
a hollow composite anisotropic circular
cylinder subjected to tension. It is desirable
to model the fiber as a cylinder of rectangu-
lar or a square cross section, possessing two
different sets of clastic constants for the
tangential and radial walls. To obtain more
precise results, it would be desirable to
round corners in a manner to simulate the
gecometry of a fiber. The analysis of such
a cylinder is very complex, however. Con-
sequently, in this work the fiber was as-
sumed to be of circular cross section. Such
an approach will yield results more nearly
consistent with the actual behavior of the
fiber than the two-dimensional analysis re-
ported to date.

THE BASIC EQUATIONS AND SOLUTION

Let us consider wood fiber as a composite
anisotropic cylinder of finite length, made
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from a material with cylindrical anisotropy,
and subjected to a tensile force P at the ends
(Fig. 1). We assume that: (1) the axis of
anisotropy coincides with the geometric
axis of the cylinder, and (2) the stresses
that act on the end surfaces reduce to forces
and to twisting moments directed along the
axis.

According to Lekhnitskii (1963), the
governing partial differential equations of
a hollow cylinder with body forces absent
take the forms:
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Here F is an arbitrary constant, asy is an
clastic constant, D is the relative angle of
twist, and L’,, L’;, L”;, L’y are differential
operators defined as follows:
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where B,.s are the elastic coefficients of
deformations.
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Because the stress distribution in a hollow
cylinder is symmetrical about the center
axis, the stress functions ® and ¥ will
depend only on the radius r (Tang and
Adams 1970). Assuming plane deformation
of a composite cylinder (Fig. 1), then equa-
tions (1) are satisfied if we take the stress
components of the jth layer in the following
form:

o = mr(r)(/) £ g{;j)) LN
X B(/) Kk — + C(/)I_—/-—7
+ 0P, (3)
0'9(/) = o' = a7 4 Pk N7
- c:(f)kjr‘k/'_7 +2D(j)6(j)r, (4)
o =vin” = —E(/)~F(j)2;j
—A(/)g,(/) B(/)g(/) k.~
= PR PP s
Uz(j) = F) _ :},’T ( au(j)vr(/)
+ 2P 4 ol O ) 6)
f‘(gj) = drz(j) =0 (7

Here all the superscripts (j) or the sub-
scripts (j) indicate particular layers. A0
BU), CO, DO ED F® are the arbitrary
constants to be determined from boundary
conditions, and D is the constant equal
to the relative angle of twist. The constants
a,, are the elastic coefficients of the mate-
rial. Other constants are as follows:
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It follows from equations (3-7) that the
displacements in jth layer can be expressed
as

) ( ( ()
(/) /( /) 1) a/)of) /)c,(/)Jr 1{){; ) dr,

nr 120 132
() B, W, D (/)(/)
/ f( 74 u"g a~°zJ (9)

The boundary conditions on the cylindri-
cal surfaces are as follows:

(1)
g

=0 at r =4
and 0',,(4) =0 a r=39 (1

At the contact surfaces of adjacent lavers,
the following stress and displacement rela-
tions must hold:

(j+1) :
r

o=
U(j): U(j‘J)

(/) J+1)

OZ - 0'( ' . a

The boundary conditions for r = a; (j = 1,
2, 3) at the ends are

z[/ Prdr = R, and

/=1

4
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In determining displacements and requiring
that they be a single-valued function of the
coordinates, it is necessary that:

R

(/) (), (j)
and 2 :/_—/h/ (3
() [(a]; ) B“ 3By —Bu)i\
BuBu Bu (Lgxﬁu B"

It should be noted also that:

() (j+1)
FPO =" 2

For the generalized plane deformation
problems, the axial strain is constant.

where h

dor
— = constant.
0z

Consequently, when a composite cylinder is
subjected to a tensile force P at the ends,
the axial strain of all layers must be identi-
cal; hence:

SR i _
2z - 2z - .

Using the boundary conditions given in
(10), we obtain:
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Furthermore,
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where M,
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From the boundary conditions given in
(12), we have:
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These unknown constants B%, C, D,
(1 =1,2 3,4, and F can be determined
from equations (14)-(20). Consequently,
all the data necessary for calculation of
stresses and displacements are available.

NUMERICAL EXAMPLIS

It is known that the microfibrillar angles
in S; and S; layers on the tungential wall of
wood fiber are different from those on the
radial wall except in the S, layer and M + P
layer (middle lamella and primary wall).
The variation of these microfibrillar angles
and the area percentage of the various cell-
wall layers in the fiber are listed in Table 1
(Mark and Gillis 1970).

To simplify the numerical calculations,
models were used with structure configura-
tions as listed in Table 2. Assuming that the
exterior radius of each model is a unity,
then, according to Table 2, the correspond-
ing radius of each layer is found to be:

R. C. TANG

TaBLE 1.

Microfibril angles and area percentages

of the various cell-wall layers in the fiber

Area ¢, of the

Filament various cell-
Layer winding angles wall layers
Radial wall
M+ P 90° 740
S + 80° 11.84
S. 36° 45.88
S 64° 8.88
Tangential wall
M4+P 90° 2.60
Si + 80° 4.94
Se 20° 16.12
Sa 30° 2.34
TaBLE 2. Data for model fiber:
Area 9. of the
Filament various cell-
Model Layer winding angles wall layers
I M4P 90° 10.00
S, + 80° 16.78
S. 36° 62.00
S 64° 11.22
I M4P 90° 10.00
Sy + 80° 16.78
Sa 20° 62.00
Sa 30° 11.22

The values used to describe the associated

a, (to the inner edge of S.): 0.82566
@ (to the inner edge of S:): 0.84700
a: (to the inner edge of S.): 0.95643
@: (to the inner edge of M + P): 0.98396
a, (to the outer edge of M 4+ P): 1.00000

The elastic constants of each layer were cal-
culated by using an approach similar to that
of Gillis (1970). Three cases are considered.
The elastic constants of crystalline cellulose
are listed in Table 3.

matrix material and the proportions of ma-
trix and framework in each layer are as

given by Mark and Gillis (1970), viz.

E =0.200 x 10" dynes/cm?
G = 0.0769 X 10 dynes/cm?

n= 0.30
and Matrix (%) Framework (%)
M+P 89.9 101
51, S2and S; 469 53.1

TasLE 3.  Elastic constants of crystalline cellulose in the cell wall (E and G in units of 10'* dyres/cm?)*

Case

E

E

1 2 E, Gy, Gy G,, Hiy g Moy Ref
1 5.13 5.65 1.68 0.049 0.236 0.018 0.0336 -0.0016 0.041 3,6
2 2.49 31.90 3.73 0.023 0.323 0.039 0.003 —0.0002 0.041 3,5
3 2.72 13.40 2.72 0.440 0.660 0.440 0.100 0.04 0.100 11 7

* The 1-direction corresponds to radial axis, the 2-direction corresponds to the filament length, and the 3-direction
completes a right-handed orthogonal set (see Fig. 2).

F It is assumed that Case 3 is transverse-isotropic, because only the coefficients E, E, G, py and g,, are available.
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TasLe 4. Elastic constants of the layers of the cell wall (E and G in units of 10"t dynes/cm?)
Case Layer E, L, E, G, G,, G,, gy Hyg gy
1 M4P 022765 059777 0.22578 0.07415 0.09471 007092 0.10079 0.18853 0.20425
1 $:S:8:  0.83588 3.09170 0.58245 0.06137 0.15161 0.04208 0.02789 0.15885 0.11425
2 M-4P 028215 324450 0.23567 0.10001 007145 0.07311 027527 0.02380 0.27867
2 $.S.S:  1.41660 17.03000 0.77241 0.04535 0.16847 0.05539 0.00498 0.15831 0.10305
3 M4+P 044601 15295 0.37308 010980 0.12651 0.J0980 009570 0.17893 0.20499
3 S:S:S; 0.39908 7.44880 0.39370 0.17621 0.20013 0.17621 0.02590 0.17760 0.20581
The elastic constants of each of the layers T3 7
with respect to their principal axes (Fig. , .
2) are listed in Table 4. The elastic \a Filaments Matrix
compliances of the various layers with - /' /—
respect to the geometric axes (see Fig. \ E——_
1) can be easily obtained by using tensor T J’:,,_———-—”;
transformations. The numerical calculation “ k:: ="
is straightforward and hence is not given o1 .
here. With these elastic compliances and - _ 4 —~ L'(2)
radius of each layer known, the stresses = == ! L
were calculated by using equations (3)—(6).
The distributions of all the stresses in the
radial direction of the cell wall are plotted R B

in Figs. 3-6, and the relative angle of twist-

Fic. 2. An element from a cell wall of a wood

fiber.

X o = externally applied tensile stress in
fiber direction.
0.2
O-TT
et 0NN o
+
o S, : “ S, : S, : M4 P
Model Case
il I
1 |
o 3
I 3
-0l - %r g

Fic. 3. Variation of

o+ along r direction.
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ing of each layer is shown also. According
to Lekhnitskii (1963), the total torsional
rigidity (7T) of a composite anisotropic
cylinder equals the sum of the torsional
rigidities of each layer (T'?); that is:
T = § T,
=1

The results of all cases are tabulated in
Table 5.

Variation of o along r direction.

where n is the total number of layers in the
cylinder. Hence, the total relative angle of
twist of a single fiber can be expressed as

p TGHDW
1

4

2 TG

j=1

4

_ Iz
Digtar =

(21

TaBLE 5. Theoretical values of the relative angle of twist of two model fibers

Relative angle of twist (degrees/cm)

Model Case S, S, S, M4 P Single fiber
1 1 645.94 63.13 147.67 329.26 110.90
2 787.47 57.02 186.06 122,77 103.02
3 567.52 357.65 88.81 228.05 334.78
11 1 150.53 158.30 191.99 428.08 193.17
2 12.92 31.83 106.85 70.50 41.79
3 252.81 59.97 57.97 148.86 89.14




ANALYSIS OF ELASTIC BEHAVIOR OF WOOD FIBER 217
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TaBLE 6. Comparison of the results of stresses from two- and three-dimensional analyses

Three-dimensional analysis

Mark and Gillis ( 1970)

G e T iy T e AP Two-dimensional analysis
Max Min Max Min ) Max Min Max Min Ty Tpre Twir 170
Tangential Wall
M+ P -0.940 -0.945 2673 2636 0O -0.043 -0.062 -0.063 -0.203 0.141 — 0
S, —0.907 -0.908 4.492 4344 -0.043 -0.172 -0.060 -0.062 -0.927 0.269 -— =*=0.037
S, -1.921 -1.936 -1.657 -1.960 0.040 -0.172 0.115 -0.060 2.613 -0.019 — 0.069
S, -0.757 -0.819 1.712 1.436  0.040 0 0.115 -0.029 2.061 0.026 — 0.094
Radial wall
M+ P -0.864 —0.860 1.964 1990 0 -0.032 -0.041 -0.042 -0.276 0.138 — 0
s, —0.845 -0.846 3.071 2970 -0.032 -0.120 -0.039 -0.041 -1.258 0.264 — =+ 0.040
S, -1.186 -1.311 -0.584 -0.750 -0.049 -0.120 0.056 -0.039 1.543 0.035 — 0.111
S, -1.891 -1.915 -1.927 -1.984 0 -0.049 0.094 0.056 -0.531 0.204 — 0.092

Applying the law of mixture with the values
given in Table 5, the values of the relative
twisting angle of a single fiber with area
percentages of tangential wall and radial
wall as shown in Tablc 1 were calculated.
The angles of relative twisting were as fol-
lows:

Case 1: 121.24°
Case 2: 95.72°
Case 3: 283.60°

These calculations contrast with the experi-
mental data reported by Mark and Gillis
(1970) of 317.70°; an average of six tests.

To illustrate the difference between two-
and three-dimensional analyses, the ratios
of longitudinal stress o, tangential stress
or, radial stress o, and the shear stress opp
to the externally applied tensile stress o in
the fiber direction for cases I3 and II3,
along with values from two-dimensional
analysis reported by Mark and Gillis (1970),
are listed in Table 6. It is evident from
this comparison that the three-dimensional
models employed here convey a much dif-
ferent impression of the state of stress in
the cell wall than two-dimensional models
reported in the literature to date.

CONCLUSIONS

The maximum radial stress for cases 11,
12, and 111 occurred at the boundary of the
S, and §; layers, while in cases 13, I12, and
I13 it is at the boundary of the S; and S.
layers. It should be noted here that the
radial stress cannot be obtained from a two-

dimensional analysis. In most cases, the
tangential stresses arc at a maximum in the
Sy layer except in cases 13 and 113, where it
occurs in the S, layer. Previous studies of
two-dimensional analyses of the elastic be-
havior of the wood fiber have lcd to the
conclusion that the tangential stress in the
cell wall is always at a maximum in the S;
layer.

The points of zero shear stress in all cases
occurred either inside the S, layer or inside
the S layer. All previous two-dimensional
analyses of the stress on the cell wall re-
ported that shear stress does not exist in the
M + P layer. This is in contrast to the
three-dimensional analysis. In addition, it
is known that shear stress exists in all radial
directions of an anisotropic tube when it is
subjected to a tensile force (Lekhnitskii,
1963).

These results suggest that a two-dimen-
sional analysis is neither sufficient nor de-
pendable for the study of elastic models
of the cell-wall. Two-dimensional analysis
supplies no information about the rclative
twisting angle of a single fiber and cach
layer in the cell wall, whereas three-dimen-
sional analysis doecs. It can be scen from
Table 5 that in case 1, model II gives the
upper bound of the relative twisting angle
of a single fiber, while model 1 gives the
lower bound. This situation is reversed in
cases 2 and 3. It is particularly intercsting
to point out that the experimental value of
the relative twisting angle of a single fiber
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obtained by Mark and Gillis (1970) falls
within the bounds of case 3, in which the
elastic constants of cellulose and matrix
given by them have been used. Hence, one
can conclude that three-dimensional analy-
sis offers a more complete and rigorous
solution of the elastic behavior of the wood

fiber.
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