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ABSTRACT 

An exact solution of stress for each la+r of cell wall nnder tension has been obtained by 
considering wood fiber ,I.; n hollow c+mposite anisotropic circular cylinder. Numerical 
results of stresses and the relative angle of twist of a single fiber, as well as the values of 
each layer of the cell wall, are given for six hypothetical wood fibers. 

Not ii t' lor1 general may be classified as follo\vs: ( 1 )  
u k ( . i ~  Normal stress in jth layer determination of the elastic constants of 

Shear stress in jth layer crystalline c&llulose on the microscopic 
P Tensile forcc at c:nds level; ( 2 )  determination of the elastic- con- 

(I j ~ ~ d i ~ ~  of fiber a t  th,o outer edge stants of the cell wall on the microscopic 
of jth layer level; and ( 3 )  stress distribution on each 

A,B,C,D, layer of the cell wall when the fiber is 
E,F Unknown const;lnts deformed. 

Compliances of ith layer The first problem has been extensively 
P " , L , h ( ' )  coefficients of defornlation of jth studied by many authors (Gillis 1969; Gillis, 

layer Mark, and Tang 1969; Jaswon, Gillis, and 
tc,,( j)  Displacc~nent in jth 1Iayc.r Mark 1968; Lyons 1959; Mark et ill. 1969; 
E L  Young's moduli Meredith 1946; Sakusada, Nukushina, and 
Gii Moduli of rigidity Ito 1962; Treloar 1960). In dealing with 

Pi j  Directional Poisson's ratios the second problem, several authors have 
T ~ ~ ~ ~ i ~ ~ ~ l  rigidit\, of a single fiber used the concept of layered systeni 11 Cave 
~ c j )  Torsional rigidit\. of ith layer 1968; 1969; Gillis 1970; Mark 1967; Mark 
D,,,,;,, ~~~~l relative ,of of a and Gillis 1970; Schniewind 1969; Schnie- 

single fiber wind and Barrett 1969). Literature ill thc 

a,* Stress functions third category, however, is limited. As is 
known, the theoretical study of strms in 

INTRODUCTIO v each layer of the cell wall is restricted in 

recellt years, considerable effort has two-dimensional analysis by cutting an ele- 

becll expended in the developnlcnt of fiber ment from the wall of tubular wood fiber 

mechanics, and as a consecluerice, the mc- (Mark 1967; R4ark and Gillis 1970; Schnie- 

c,anical behavior of the cell ,Yall has be- wind 1969; Schniewind and Barrett 1969). 

very inlportallt. Tile I,roblems in I t  is quite obvious that a significant change 
of stress in each layer of the wall will arise 

The investigation reportecl in  this paper (No. when considered as a three-dimensional 
71-8-13) is in connection a project of the system. This has been demonstrated by the 
Kentucky Agricultural Experiment Station and is experimental testing of a helically rcinforced 
published with the approval of the Director. plastics pipe (Mark 1967). ~h~ rotatioll 
Funds for this research were made available under 
the provision of the McIntire-Stennis Cooperative test of a simple fiber (pine) under tt,nsion 
Forestry Research Program of thc~ U. S. Department has been reported by Mark and (:illis 
of Agriculture. The author is indebted to this (1970). NO literature on the th(:o~.ctical 
agency and to the Kentucky Agricultural Experi- analysis of twisting of a single fibfbr has 
ment Station for their support on this project. 
The numerical analysis was oomgleted on the been found by the author. 
facilities at the university of ~ ~ , ~ ~ ~ ~ k ~  computing In this papel-, the stresses and the relative 
center. angle of twist on each layer of cell wall are 
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S, layer 
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FIG. 1. Schematic diagram of the problem. 

calculated by considering the wood fiber as 
a hollow composite anisotropic circular 
cylinder subjected to tens~on. It  is desirable 
to model the fiber as a cyliilder of rectangu- 
lar or a square cross section, possessing two 
different sets of elastic constants for thc 
tangential and radial walls. To obtain more 
precise results, it would be desirable to 
round corners in a manner to simulate the 
gcomctry of a fiber. The analysis of such 
a cylinder is vcry complex, however. Con- 
sequently, in this work the fiber was as- 
sumed to be of circular cross section. Such 
an approach will yield results more nearly 
coilsistent with the actu:ll behavior of the 
fiber than the two-dimensional analysis re- 
ported to date. 

THE BASIC EQUATIONS A S D  SOLUTION 

Let us consider wood fiber as a compositc 
arlisotropic cylinder of finite length, madc 

from a material with cylindrical anisotropy, 
and subjectetl to a tensile force P at the ends 
(Fig. 1 ) .  We assume that: ( 1 )  the axis of 
anisotropy coincides with the geometric 
axis of the cylinder, and ( 2 )  the stresses 
that act on the end surfaces reduce to forces 
and to twisting monlents directed along the 
axis. 

According to Lekhnitskii ( 1963), the 
governing partial differential equations of 
a hollow cylinder with body forces absent 
takc the fornis: 

Here F is an arbitrary constant, aa l  is an 
elastic constant, D is the relative angle of 
twist, and Lr2, Lr3, L":j, Lrq are diffenmtial 
operators defined as follows: 

where P,,'s are the elastic coefficients of 
deformations. 
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Because the stress distribution in a hollow 
cylinder is symmetrical about the center 
axis, the stress functions and * will 
depend only on the radius r (Tang and 
Adams 1970). Assuming plane deformation 
of a composite cylinder (Fig. 1 j, then equa- 
tions (1) are satisfied if we take the stress 
components of the jth layer in thc foIIowing 
form : 

I t  follows from equations (3-7) that thc 
displacements in jth layer can be exprcssed 
as 

Here all the superscripts i j )  or the sub- 
scripts ( j ) indicate particular layers. A") 
B ( J ) ,  C(3), D(3), E(3) ,  F(3) are the arbitrary 
constants to be determined from boundary 
conditions, and D(3) is the constant equal 
to thc relative angle of twist. The constants 
n,,,,, are the elastic coefficients of the mate- 
rid. Other constants are as follows: 

The boundary conditions on the c:y li~idri- 
cal surfaces are as follows: 

(1) a;. = O  at r = d ' ,  

and mi4) = 0 df r = d, (10 

At the contact surfaces of adjacent layers, 
the following stress and displacement rela- 
tions must hold: 

The bounclary conditions for r = aj ( j = 1, 
2 ,3 )  at the ends are 
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In determining displacements and requiring a34 
that they be a single-valued function of the where M l  = (qlt/3,;&)h t(a13-P 14,044 -)* 

coordinates, it is necessary that: 

F(;)  = 0 
L. 

(1) Cj) 
dnd a"' = F h 

It  should be noted also that: (i+l) ,(j) 
( j l  (j.1) d34 (i.1) (j+l)- ci, (1) 

F = F  = F a  ~ ( - - - & t h  ' $ + I )  47) q h g l  

For the generalized plane deformation 
problems, thc axial strain is constant. (J+U (j+l) k .  -1 - B ( ~ b ( ~ & k j  -1 t B  gk d J ' 1  

a, J k I 
---- = const:~nt. 
dz ()+I) ( j t l )  - k .  -1 (j) ( j )  -kj-1 t c  s, J - c  s ,q  

Conseclucntly, when a corr~posite cylinder is 
subjected to a tensile forclc P at  the ends, (/+I) J+l) 
the axial strain of all laye~s must be identi- - (D 4 -.dl'H'l',aj=O,(j=l2,3) (18) 

cal; hence : From the boundary conditions givcxn in 

a w J a w  
(J + 7) ( 12), we have: 

- -  
az - az = F *  

Using the boundary contlitions given in 
( l o ) ,  we obtain: 

Furthermore, the boundclry conditions of 
( 11 ) givc (19) 

(;+I) k .  - 1 -  B(~)ap- l  F (h(~'l) -h(j)) t B a . PI and 
J 
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These unknown constants B(j1, C ( j ) ,  D' j ) ,  
( j = 1, 2, 3, 4,) and F can be determined 
from equations ( 14)-(20). Consequently, 
all thc data necessary for calculation of 
stresses and displacements arc available. 

NUMERICAL EXAXIPLES 

It  is known that the microfil-~rillar angles 
in S2 and S3 layers on the tmgential wall of 
wood fiber are different from those on the 
radial wall except in the S1 layer and M + P 
layer (middle lamella and primaiy wall). 
The variation of these microfibrillar angles 
and the area percentage of the various cell- 
wall layers in the fiber are listed in Table 1 
( Mark and Gillis 1970). 

To simplify the numerical calculations, 
models were used with structure configura- 
tions as listed in Table 2. Assuming that the 
rxtcrior radius of each model is a unity, 
thcn, according to Table 2, the corrcspond- 
ing radius of each layer is found to be: 

a,, (to the inner edge of S,)  : 0.82566 
a, (to the inner edge of S2) : 0.84700 
(12 (to the inner edge of S , )  : 0.95643 
a ,  (to the inner edge of M + P )  : 0.98396 
a, (to the outer edge of M + P )  : 1.00000 

The elastic constants of each layer were cal- 
culated by using an appr0ac.h similar to that 
of Gillis ( 1970). Three cases are considered. 
The elastic constants of crystalline cellulose 
arc listed in Table 3. 

TABLE 1. Microfibril angles and area percc?irtages 
of the various cell-wall layers in the fiber 

Layer 

Area % of the 
Filament various cell- 

winding angles wall layers 

Iladial wall 
M + P  
S1 
S, 
S, 

Tangential wall 
M + P  
Sl 
sz 
S3 

TABLE 2. Data for model fiber. 
- -- - -  

Are.! ? of the 
Filament v.~riooa cell- 

Model Layer winding angles w 111 layers 
- -- 

I M + P  90" 10.00 
SI 2 80" 16.78 
S, 36" 62.00 
S3 64" 11 22 

The values uwed to describe the assodated 
matrix material and the proportions of  ma- 
trix and framework in each layei :ire as 
given by Mark and Gillis ( 1970), viz. 

and Matrix ( % )  Framework (7.) 
M + P  89.9 10.1 
S,, S2 and S, 46.9 53.1 

TABLE 3. Elastic constants of  C I  ystc~lline ce l l t~ lo~e  in the cell wall ( E and G in units of  1011 dyi e ,  r m') * 
-- 

Case E, E, E3 G u  Gr, Gm 
flr2 8 1 3  .% Ref 

-- -. -- 

1 5.13 5.65 1.68 0.049 0.236 0.018 0.03315 -0.0016 0.041 3,G 

3 2.72 13.40 2.72 0.440 0.660 0.440 0.100 0.04 0.100 11 t 
" The 1-direction corresponds to radial axis, the 2-direction corresponrls to the. filament length, and the 3-direction 

completes a right-handed orthogonal set (see Fig. 2 ) .  
t It i~ assnnird that Case 3 is transverse-isotropic, because only the roefficirnt:; E,, E,, 6,. fix,, and fiC3, art: available. 
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TABLE 4. Elastic constants of the layers of the cell wall ( E  and G in units of 1011 dynes/cm2) 
- -- -. 
Case Layer El I:, '?I G~ GI:, G ,  4 2  813 % 

- 

1 M +  P 0.22765 0.59777 0.22578 0.07415 0.09471 0.07092 0.10079 0.18853 0.20425 
1 SIS?S:I 0.83588 3.09170 0.58245 0.06137 0.15161 0.04208 0.02789 0.15885 0.11425 
2 h l + P  0.28215 3.24450 0.23567 0.10001 0.07145 0.07311 0.27527 0.02380 0.27867 
2 S,S,S, 1.416fN 17.030800 0.77241 0.04535 0.16847 0.05539 0.0498 0.15831 0.10305 
3 M + P  0.44601 1.5295 0.37308 0.10980 0.12651 0.10980 0.09570 0.17893 0.20499 
3 SISSS:~ 0.39908 7.44880 0.39370 0.17621 0.20013 0.1.7621 0.02590 0.17760 0.20581 

- 

The elastic constants of each of the layers 
with respect to their principal axes (Fig. 
2 )  are listed in Table 4. The elastic 
compliances of the various layers with 
respect to the geometric axes (see Fig. 
1) can be easily obtained by using tensor 
transformations. The numerical calculation 
is straightforward and hence is not given 
here. With these elastic compliances and 
radius of each layer known, the stresses 
were calculated by using equations (3)-(6). 
The distributions of all the stresses in thc 
radial direction of the cell wall are plotted 
in Figs. 3-6, and the relative angle of twist- 

FIG. 2. An element from a cell wall of a wood 

\ a 1 ,,- F~laments [Matrix 
k- 

/--- 

fiber. 

3C a = externally applied tensile stress in 
fiber direction. 
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171~. 3. Variation of or, along r direction. 
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Model Case 
I I 

--- I 2 
-.-.- I 3 
-. .- Is I 
-...- II 2 
-....A II 3 

I .  4 .  Variation of goo along r direction. 

ing of each layer is shown also. According 
to Lekhnitskii ( 1963 ) , tho total torsional 
rigidity ( T )  of a composite anisotropic 
cylinder equals the sum of the torsional 
rigidities of each layer ( T ' j ) ) ;  that is: 

n 
T = 2 T ( j )  , 

3.21 

The results of all cases are tabulated in 
Table 5. 

where n is the total number of layers in the 
cylinder. Hence, the total relative angle of 
twist of a single fiber can bc cxp~esst,d as 

TABLE 5. Theoretical values of the relative angle of twist of two rnodel fibers 
-- 

Relative angle of twist (degrees/cm ) 

Model Case S. s ., ST M + P  Single fiber 
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Model Case 

FIG. 5 .  Variation of u,, along r direction. 

Case 

2 

2 

I 
3 
I 
3 

FIG. 6. Variation of us, along r direction. 



TABLE 6. Compari~on of ithe results of stresses from tuo-  ancl three-dimensional ana1yse.r 
-- - -. -. - - -- - 

Three-dimensional analysis 
- - Mark and Gillis 1' L!)70) 

a I 'rr T '(r I(/,, f l  I. T cr Twcl-dimension;il :~n,~lysis 
pp pp -. .. - 

Max Min Man Min Max Min M;lx Min o , ,  L T ~ , / , ,  ,,,, fl,,7,i(, 

Applying the law of 1nixtui.e with the values 
given in Table Fj, the values of the relative 
t\vi\ting angle of a singlc fiber with area 
percentages of tangential wall and radial 
wall as shown in Tablc 1 \\ere calculated. 
The angles of relative twi\ting were as fol- 
lows: 

Casc 1: 121.24" 
Case 2: 93.72" 
Casc 3: 253.60" 

These calculations contrast with thc, experi- 
mental data reported by Mark and Gillis 
( 1970 ) of 317.70"; an average of six tests. 

To illustrate the diffcrerrerl betwcen two- 
and three-dimensional an;llyses, the ratios 
of longitudinal stress  IT^,, tangential stress 
( J ~ . ,  radial stress (rIi, and th(, shcar stress (TI,TI 

to thc externally applied teilsilc stress a in 
the fiber direction for cnscs I3 and 113, 
along with values from two-dimensional 
analysis reported by Mark ant1 (>illis ( 1970), 
are listed in Table 6. I t  is c:vidcnt from 
this comparison that the thrcc-dirncnsional 
rnodels employed herc convc>y a much dif- 
ferent inlpression of the state of strcss in 
the cell wall than two-din ~cilsional models 
reported in the literature to date. 

Thc iilavimum radial stless for cases 11, 
12, and I11 occurred at the boundas! of the 
S 2  and S:, layers, while in cases 13, 112, and 
I13 it is at  the boundary of the S1 and S, 
layers. I t  should be noted herc that the 
radial stress cannot be obtained frorn a two- 

dimensional analysis. In most casts, thc 
tangential stresses arc at a rnaxim~~n-I in the 
S:, laycr except in cases I3 and 113, \.\.here it 
occurs in the S1 layer. Previous studies of 
two-dimensioinal analyses of thc elastic be- 
havior of the wood fiber h a w  1c.d to the 
conclusion that the tangential strcss in the 
cell wall is always at a maximum in thc SI 
laycr. 

The points of zero shear stress in all cases 
occurred either insidc the Sz layer or inside 
the S, layer. All previous two-dimensional 
analyses of the stress on the cell \vall re- 
ported that shear stress does not exist in the 
M + P layer. This is in contrast to the 
three-dimensional analysis. In addition, it 
is know11 that shear stress exists in all radial 
directions of an anisotropic tube \vhrn it is 
subjected to a tensile force (Lckhilitskii, 
1963 ) . 

These results suggcst that a two-dimcn- 
sional analysis is neither sufficient nor dc- 
pendable for the study of clastics models 
of the cell-wall. Two-dimensional analysis 
supplies no information about the rcdative 
twisting angle of a single fiber ancl each 
layer in the cc.11 wall, whereas three-diinen- 
sioilal analysis docs. I t  can be seen from 
'Table 5 that in case 1, model I1 gives the 
upper bound of the relative twisting angle 
of a single fiber, while model I givvs the 
lower bound. This situation is re\ersc.d in 
cases 2 and 3. I t  is particularly intel-csting 
to point out that the experinlental value of 
the relative twisting angle of a sinqlr, fiber 
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obtaiilcd by Mark and Gillis (1970) falls 
within the bounds of case 3, in which the 
elastic constants of cellulose and matrix 
given by thcin have beell used. Hencc, one 
can conclude that three-dimensional analy- 
sis offers a morc complcte and rigorous 
solutioil of the elastic behavior of the wood 
fiber. 
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