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ABSTRACT 

Trees with decayed wood that are subject to moderate winds often collapse and cause property 
damage or injury and death to people. The purpose of this paper is to describe a decision-making aid 
to help identify a tree that may fail in the forest or be a potential hazard in the city. A tree may fail 
when the probability of radial shear cracks developing for a given wind load is sufficiently high. 

Mathematical models are used to estimate the constant wind force on trees and to evaluate the 
cracking and collapse mechanisms under this loading. The physical dimensions are used to determine 
the wind force or drag on the tree, and the amount of decay in the tree is used to determine its ability 
to resist this load. Owing to uncertainties associated with accurately measuring and modeling a decayed 
tree, estimating the wind load, and specifying the wood strength of a tree species, reliability analysis 
is used to assess the potential risk of failure. Coupling this information with meteorological data for 
the largest wind speed value expected at the tree site and the topography of the tree site completes 
the analysis of potential failure. Case studies of balsam fir trees with the same exterior diameters but 
with different dimensions of decay columns, tree weights, tree heights, and wind speed conditions are 
analyzed and compared. 
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INTRODUCTION 

Destructive field testing of balsam fir (Abies balsamea) with root and butt decay 
caused by Armillaria mellea showed that the amount of decay was the most 
significant factor in predicting cracking and collapse failure forces on trees subject 
to static forces. As a result, mathematical models were developed to simulate the 
cracking and collapse mechanisms of a balsam fir under constant horizontal load- 
ing. The mechanism consists of two sequential events. First, a pair of radial cracks 
were observed on either side of the decay column of the main stem. Second, tree 
collapse occurred when the bending stress equaled the modulus of rupture of the 
tree. The tree resistance to cracking and collapse was dependent upon the external 
dimensions of the tree and dimensions of the decay column. The drag or wind 
forces on a tree have been determined in wind tunnel tests. These tests have shown 
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FIG. 1 .  The wind force diagram. 

that the magnitude of the wind force is dependent upon the weight of the tree 
and the wind speed (Fraser 1962). 

The mathematical models that are used to describe the cracking-collapse mech- 
anism and to estimate the wind load are combined in an analysis procedure. 
Owing to the uncertainties associated with estimating model input variables of 
wind loading and tree strength and inherent variability of physical properties of 
wood, reliability analysis is used. The rationale behind the use of reliability anal- 
ysis is described and its practical application is demonstrated with case studies. 

CRACKING-COLLAPSE MECHANISMS 

Analysis of destructive field test data of balsam fir trees leads to the development 
of a failure theory (Peters et al. 1984). The tree is assumed to be loaded with a 
wind pressure load that can be represented as a resultant force h acting at a distance 
e above ground (Fig. 1). Since a typical balsam fir tree is susceptible to decay at 
the base (root rot), cracking and bending failures are expected in this region. 
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FIG. 2. The tree model. 

The failure model 

The tree is assumed to act as a tapered cantilever beam subject to a constant 
horizontal force h that is rigidly supported at the base (Fig. 1). Since cracking and 
bending failures are assumed to occur at the base, the tree is modeled as a tapered 
cylinder with a conical-shaped decay column (Fig. 2). The wood in the decay 
column is assumed to have zero strength. The wood in the main stem and root 
flare regions is assumed to be sound and of equal strength. 

The wind force will cause the tree to bend. Since the tree is assumed to act as 
a cantilever beam, bending and shear stresses are developed. For simplicity, the 
result of bending will be represented as two internal forces, tension (T) and 
compression (C) forces (Fig. 3). Shear failure is assumed to be predominant in 
the phase that leads to radial cracking on either side of the decay column. The T 
and C forces act in opposite directions, tending to cause the tree segments on 
either side of the maximum shear plane to slide past one another. The maximum 
shear stress is assumed to occur on the plane of maximum shear stress (Fig. 3). 
The point of maximum shear stress on the shear plane is assumed to develop at 
point A, at the edge of the decay column at the base of the tree. From symmetry, 
the shear stresses at points A are equal. When the wind force h is sufficient, the 
shear stress at points A will equal the critical shear strength of the wood parallel 
to the grain. Cracks will develop at points A and propagate upward into the main 
stem and outward towards points B. If the wind load is sufficient to cause cracking 
to initiate at points A, it is assumed that cracking will proceed upward into the 
main stem and outward to the exterior edge of the tree. The net result is that the 
tree no longer reacts as a single cantilever beam, but as two cantilever beams. 
The cracking phase is assumed to be complete and the collapse phase begins. 
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FIG. 3. The cracking phase. 

Since the main stem is assumed to behave as two cantilever beam segments, 
the main stem of the tree behaves as two half hollow cylinders (Fig. 4). During 
the collapse phase, there is a redistribution of internal forces within each half 
hollow cylinder. The internal tension and compression forces are shown simply 
as T/2 and C/2 for a half tree segment because the two half cylinders are assumed 
to be equally strong. The bending strength of these segments is assumed to control 
during the collapse phase. When the wind force is sufficient, the tension and 
compression stresses caused by forces T/2 and C/2 equal the ultimate tension and 
compression strengths of the wood. Wood fibers will fail and the tree collapses. 
The collapse mechanism is expected to initiate above the root flare. 

The hypothesis presented here is supported by visual observation during de- 
structive field testing and analytical data gathered during these tests. The following 
is a mathematical model description of the failure theory. 

Analytical models 

The critical load to cause radial cracking h, is estimated with the following 
mathematical model: 

where do = inside bark tree diameter at the base, di = diameter of the decay 
column at the tree base, and T = critical shear strength. The model assumes that 
the tree responds as a hollow cylindrical or tubular section under shear loading. 
Radial cracks that are present prior to loading are assumed not to affect the 
determination of h,; therefore, they are not considered in this analysis. Further- 
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FIG. 4. The collapse phase. 

more, it was found in our field and laboratory tests (Peters et al. 1984) that the 
average critical shear strength of 239 N/m2 (39 psi) is significantly lower than the 
shear strength of 4,600 N/m2 (668 psi) for sound wood samples. The coefficient 
of variation A, was estimated to be 0.125. 

The critical load to cause tree collapse, the ultimate horizontal load h, that may 
be placed on the tree, is 

where I = moment of inertia of a half cylindrical section, c = critical distance 
between the neutral axis and extreme fiber to cause maximum bending stress in 
a half hollow cylindrical section, a = modulus of rupture of green balsam fir, and 
e = moment arm or distance between resultant wind force and tree base. Since it 
is assumed that the radial cracking has occurred, a one half hollow cylindrical 
section is used for the collapse mechanism because the effective area for bending 
resistance is reduced to two half sections. In addition, it is assumed that the 
bending caused by the horizontal wind force is equally distributed between the 
two half hollow cylindrical sections. The equations of the moment of inertia I 
and critical distance c for a half hollow cylindrical section are respectively 
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where do' and d,' are the outside tree diameter and diameter of the decay column 
above the root flare. 

W I N D  FORCES 

Fraser (1962) conducted wind tunnel studies to determine the drag force of 
various tree specimens under constant wind speed. He found that wind speed v 
(knots) and tree weight w (pounds) are the significant factors in determining the 
resultant wind force. For coniferous trees, the regression equation is 

with a standard error estimate of 17.4 Ib. The dry weight w, in pounds of the 
above-ground components of a balsam fir tree (Tritton and Hornbeck 1982) is 
estimated with the regression equation 

W, = 1.8 1 (dbh)2.4 (7) 

where dbh = tree diameter at breast height (1.37 m above ground) in inches. The 
total weight is equal to 

where m is the moisture content (expressed as a decimal) of the tree. The average 
moment arm p, is estimated to be 

where L = height of the tree. The moment arm estimates ranged from 0.52L to 
0.84L (Peters et al. 1984). 

RELIABILITY ANALYSIS 

A tree is defined to be safe if the tree is sufficiently strong to resist a wind load 
without cracking. Otherwise, it is classified as hazardous and is considered to be 
potentially dangerous. 

Safe: h < h, ( 104  

Hazard: h 2 h, (lob) 

The variables h and h, will be treated as random variables H and H,, respectively, 
because of the associated uncertainties found in nature and estimating the input 
variables of Eqs. (I)  and (6). The difference in the magnitudes of wind load critical 
load is defined to be the margin of safety for cracking or 

If a tree is safe H < H,, then M, < 0. Similarly, if a tree is hazard H 2 H,, then 
M, r 0. The probability that a tree is safe or hazard is expressed as 

Safe: P[M, < 01 

Hazard: P[M, 2 01 

Likewise, the following classification is used for tree collapse. 

No collapse: h < h,, (134 

Collapse: h 2 h, (13b) 
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The variables h and h, will be treated as random variables, H and H,, respectively. 
The margin of safety for collapse is defined as 

The collapse, H, 2 0, must be preceded by cracking, M, a 0. Thus, the probability 
of no collapse and collapse are given by the conditional probabilities 

No collapse: P[M, < 0 I M, r 01 (1 5 4  

Collapse: P[M, 2 0 I M, r 01 (15b) 

The assumptions and derivations of the classification Eqs. (12a), (12b), (1 5a), 
and (1 5b) are given in the Appendix. 

EXTREME WIND SPEEDS 

In the evaluation of the sources of uncertainty, it was assumed that the wind 
speed is known. As a result, the probabilities of tree cracking or tree collapse for 
a given wind speed v may be expressed as conditional probabilities. Using the 
classification probabilities of Eqs. (14) and (1 5) ,  they are rewritten as 

Hazard: P[M, 2 0 I V = v] ( 16a) 

Collapse: P[M, 2 0 I (M, 2 0) f l  (V = v)] ( 16b) 

Statistical analyses of extreme wind speed data at 141 locations in the United 
States indicate that the Type I and Type I1 probability distributions of largest 
values most adequately describe the yearly occurrence of these extreme winds. 
The probability that a tree under evaluation will crack or collapse in any single 
year is estimated as 

Hazard: 

Collapse: 

where fv(v) is the probability density function of a Type I or Type I1 distribution 
of largest wind speed values. 

Extreme wind speed distribution 

The selection of f,(v) will be dependent upon the meteorological and terrain 
conditions at the tree site. For purposes of this evaluation, the extreme wind 
speeds recorded at airport locations will be used (Simiu et al. 1979). These wind 
speeds represent recordings taken in open terrain; thus they must be corrected to 
account for local surface roughness conditions. The wind-speed power law rela- 
tionship for open country; wooded areas, small towns or suburbs; and central 
areas of large cities will be used to correct for local effects (Hart 1982; International 
Conference of Building Officials 1979). 
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WIND SPEED, mph 

FIG. 5. Probability distribution of extreme wind speeds in Concord, New Hampshire. 

The likelihood of tree collapse 

Tree collapse occurs only if the applied load H is sufficient to exceed the tree 
cracking resistance load H, and the ultimate load H,. The probability P[M, 2 01 
is the likelihood that only radial cracking will occur in any year. Similarly, P[Mu 2 

OJM, 2 01 is the likelihood of tree collapse in any year, given that the tree is 
already cracked. The cracking may have occurred from an earlier extreme wind 
condition, or possibly, both cracking and collapse have occurred from the same 
extreme wind condition. The probability that a tree will collapse because of the 
same extreme wind is the joint probability that both cracking and collapse occur or 

P[(M, 2 0) n (M, 2 O)] = P[Mu 2 0 I M, 2 01 . P[M, 201 (18) 

It is possible that the critical cracking resistance load is equal to or greater than 
the ultimate load or h, 2 h,. Whether the critical cracking resistance h, is less 
than, equal to, or greater than the ultimate load h, will depend upon the config- 
uration and extent of internal decay. When h, 2 h,, it is assumed that the wind 
load will be sufficient to cause cracking and collapse to occur simultaneously. 
There is no reserve strength in the tree after cracking occurs. In terms of proba- 
bility, the conditional probability, 

is assumed to be equal to one. 

DISCUSSION 

In order to vividly describe the classification scheme, numerical results of the 
reliability analyses for several case studies are presented. In case 1, a tree with 
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TABLE 1 .  Sources of measurement error.* 

Range estimates 
Model vanable X e = X U  - A',= 1 %  -11.1 Coeffic~ent of variation 6. 

Do 3.42 cm (0.125 in.) 0.012 
D,' 3.42 cm (0.125 in.) 0.012 
D, 3.42 cm (0.125 in.) 0.012 
D, ' 3.42 cm (0.125 in.) 0.0 12 
Dm 3.42 cm (0.125 in.) 0.0 12 
E 0.2L 0.154 

* The uniform probablllty distribution 1s assumed for all model parameters except E 
where 

xu = upper range o1.x. and x, = lower range of x, and p. = mean of x. 

The model parameter E is assumed to be a normal probability distribution where 

p, = 0.65L 

w~th  the upper and lower ranges of  E assumed to be withln two standard deviations of the mean p. of xu = 0.85L and x, = 0.45L 

the following dimensions was analyzed: do = 6 in.; d, = 4.6 in.; do1 = 5.7 in.; d,' = 

3.3 in.; dbh = 4.8 in., and L = 360 in. The decay column for the tree samples 
used in the destruction sampling showed the following average relationships: di' = 

0.72d,; and do1 = 0.95do. A balsam fir tree of these dimensions is representative 
of the average tree subject to destruction testing (Peters et al. 1984). It will be 
assumed that the tree will be subject to extreme wind speed recorded at the airport 
in Concord, New Hampshire. The mean extreme wind speed and coefficient of 
variation is 42.9 mph and 0.195, respectively. A Type I1 probability distribution 
for largest value with a tail length parameter of 9 will be used (Simiu et al. 1979) 
and is shown in Fig. 5. The sources of measurement error, inherent variability, 
and model uncertainty assumed in the analysis are recorded in Tables 1, 2, and 3. 

The probability of tree cracking and collapse for a given wind speed v is pre- 
sented as the conditional probabilities P[M, r 0 ( V  = v] and P[Mu 2 0 I (M, 2 

0) n (V = v)], respectively. The relationships for case 1 are shown in Fig. 6. Owing 
to the greater certainty associated with model inputs for cracking mechanism as 
compared to ultimate load mechanism, a more sharply defined increase is ob- 
served for P[Mc L 0 I V = v] than for P[M, 2 0 ( (M, r 0) fl (V = v)]. The sources 
of uncertainty for H, H,, and H, as well as other model variables are given in 
Table 4. The major source of uncertainty in estimating H, is the moment arm 
estimate of 3. The use of Eqs. (17a), (17b), and (18) gives the likelihoods of tree 

TABLE 2. Sources of inherent variability.* 

Model vanable X Mean p. Coefficient of variation A. 

T 239 N/m2 (39 psi) 0.125 
Z 38.6 1 x lo6 N/m2 (5,600 psi) 0.125 
M 0.70 0.082 

* T and 2 are assumed to have a normal probabihty distribution. M is assumed to have a un~form probability distribution with a 
range of values from 0.60 to 0.80. See footnote of Table I for equations for estimating A,. 
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TABLE 3. Sources of model uncertainty 

Bias Coefficient of 
factor variation 

Predicted value Y *Y AY 

Hc 0.93 0.044 
Hu 0.95 0.149 
H 1 .O 17.4/pH 
W 1 .o * 

* Not reported In literature source. It is considered to be small value in relation to other model input variables; since it  is considered 
negl~gible, A, = 0 is assumed. 

cracking as P[M, 2 01 = 0.659 and tree collapse as P[Mu 2 O(Mc m 0] = 0.505 
and P[Mu > 0) n (M, 2 01 = 0.332. 

The effect of the extent of decay, tree weight, and tree height, and extreme wind 
speed have been studied in a sensitivity analysis. One or more model input 
variables are changed, and the results of the reliability analyses are compared to 
case 1. The results are presented in Tables 5 through 9 and in the following 
discussion. 

Extent of decay 

In cases 2 and 3 (Table 5), it is assumed that di = 3.6" and 5.5", respectively. 
The conditional probabilities P[M, r 0 I V = v] and P[Mu r 0 ( V = v] for cases 2 
and 3 are shown in Figs. 7 and 8. The analysis shows that the changes have a 
major effect upon estimates of the critical cracking loads, phc and collapse resistance 
loads p,,,. For case 2,  since phc > p,,, (i.e., 224 > 18 l), there is no reserve strength 

WIND SPEED, mph 

FIG. 6 .  Conditional probabilities for tree cracking and collapse, case 1 .  
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TABLE 4. Estimated coeficients of variation. 

Model output Y Coefficient of variat~on 0. 

in the tree; thus it assumed that cracking and collapse will occur simultaneously 
and P[Mu r 0 1 M, 2 01 = 1 .O. Thus P[M, 2 01 = P[(Mu 2 0) n (M, 2 O)] = 0.092. 
For case 3, cracking is predicted to be a certain outcome, P[M, 1 01 = 1.0 because 
ph, < ph, (i.e., 64 < 148). These results show that the extent of decay as measured 
by the single input estimate of p d ,  has a dramatic impact upon tree behavior under 
extreme wind speed conditions. 

In the destructive tests, the decay column was found to have different tapers. 
The values of dil ranged from 0.33di to 0.89di. From Eq. (I), it is evident that 
the cracking load h, is independent of d,'. As a result, wc = 155 lb and P[M, 2 

01 = 0.659 for cases 1, 4, and 5 (Table 6) are the same. For case 4, the probability 
of tree collapse, P[(Mu 2 0) f' (M, 2 O)] is less than for case 1. For case 5, since 
phc > ph, (i.e., 155 > 142) and cracking and collapse are expected to occur si- 
multaneously, thus P[M, > 01 = P[Mu 2 0 1 M, r 0] = 0.659. The tree in case 5 
has a very slight taper in the decay column as compared to cases 1 and 4. These 
case studies show that the extent of decay as measured by p,, and pdi, has a dramatic 
impact upon the ability of a tree to resist cracking and collapse. 

Tree weight 

The horizontal wind force h is assumed to be dependent upon wind speed v 
and tree weight w, Eq. (6) and, in turn, upon the solid tree weight w,, Eq. (7), and 
moisture content m, Eq. (8). Since there have been several studies performed and 
equations derived to estimate ws and the relationships give similar predictions 
(Tritton and Hornbeck 1982), it is assumed that the prediction of w, can be 
estimated with reasonable confidence as compared to moisture content. For case 
1 the moisture content of a tree is assumed to vary between 0.6 and 0.8 or 6, = 

0.082. In case 6 (Table 7), the mean moisture is assumed to be equal to 1.4 with 
6, = 0.082. The relationship of mean horizontal force p, with wind speed v is 
shown in Fig. 9 for m = 0.7 and 1.4, respectively. In case 7, it is assumed that 
the moisture content may lie between 0.5 and 1.5. Consequently p, = 1.0 and 
6, = 0.289. The results shown in Table 7 indicate that phc and phu are unaffected, 

TABLE 5. Effect of decay column diameter, d,. 

Case Pd, Pk Wh. P[(M, 2 0) n P[M. 2 01 PIM. 2 O I M, z 0] (M, 2 o)] 

1 4.6 in. 155 1b 167 Ib 0.659 0.504 0.332 
2 3.6 in. 224 lb 181 1b 0.092 1 .OOO 0.092 
3 5.5 in. 64 lb 148 Ib 1.000 0.649 0.649 
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WIND SPEED, mph 

FIG. 7. Conditional probabilities for tree cracking and collapse, case 2. 

but p,, is significantly affected by moisture content as evidenced by the probabilities 
of cracking and collapse. These results indicate that a tree with a higher moisture 
content has a greater likelihood of cracking and collapse than a tree with the same 
dimensions and lower moisture content. 

Tree height 

The moment arm e is assumed to be related to the tree height, e = 0.65L and 
affects the ultimate load h,. The taller the tree, the greater the risk of collapse as 
shown by comparing cases 1, 8, and 9 (Table 8). 

Surface roughness 

All estimated resistance loads, cracking and collapse probabilities given in Ta- 
bles 5 through 8, are estimates for an unprotected tree in open country. The tree 
is assumed to be subject to an average extreme wind speed of 42.9 mph at 10 
meters above ground in any given year. With use of the wind-speed power law, 
the estimated average extreme wind speeds for wooded and city areas are 26 mph 
and 15 mph, respectively. A tree stand and man-made structures increase surface 
roughness and tend to protect an individual tree from wind damage. The analysis 
(Table 9) shows that the cracking and collapse probabilities are significantly re- 
duced. The increased surface roughness of the wooded and city environments 
offers protection against failure. 

Reliability analysis gives quantitative measures of the potential risk of tree 
cracking and collapse under extreme wind speed for any given year. The proba- 
bility measures are intended to be a decision-making aid. The actual assignment 
as to whether a tree is classified as potentially hazardous or safe will depend on 
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WIND SPEED, mph 

FIG. 8. Conditional probabilities for tree cracking and collapse, case 3 

the economic and physical risks associated with tree collapse. For example, if 
P[M, 2 01 = 0.05, there is a five in one hundred chance that the tree will crack 
under extreme wind loading in any given year. In a city or surburban environment, 
this risk may be considered significantly large to have the tree cut down and 
removed to avoid physical damage to people and property. The same tree situated 
in a remote rural or forest environment may also be removed for reasons of better 
forest management. The final decision will be based upon economics and the 
danger to humans. 

CONCLUSION 

Reliability analysis offers a method for evaluating the potential failure of a 
decayed tree under constant wind speed. The method is intended as a decision- 

TABLE 6. Efect ofdecay column taper, d,'. 

P[(M, r O) n 
Case fid ~h ~h P[M, 2 01 P[M, 2 0 IM, 2 0) (M, r O)] 

- - -- 

1 4.6 in. 155 lb 167 lb 0.659 0.504 0.332 
4 1.5 in. 155 lb 199 Ib 0.659 0.3 12 0.206 
5 4.1 in. 155 1b 142 Ib 0.659 1 .OOO 0.659 

TABLE 7. Effect of mo~sture content, m. 

P[(M, r 01 n 
Case 6, vm P k  llh. P[M, 2 O] P[M, r OI M, r 01 (M, 2 O)] 
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WIND SPEED, m p h  

FIG. 9. The effect of moisture content on wind loading. 

making tool for classifying a tree as hazard or safe. Sensitivity analyses show that 
care must be taken to accurately determine the input variables of the models. 
Analyses show that the most critical factor in our classification scheme is the 
exposure of the tree to wind forces. It was shown that rough terrain offers significant 
protection against cracking and collapse. In this paper, a case study of balsam fir 
with root and butt rot was undertaken. The mathematical modelling approach, 
presented here, is general and can be applied to other tree species if the failure 
mechanism of the species is known. 

TABLE 8. Effect of tree height, L. 

P[(M, r 0) n 
Case L Ph, Ph. P[M, r 01 P[M, 0 1  M. r 01 (M, 2 o)] 

1 360 in. 155 Ib 167 Ib 0.659 0.504 0.332 
8 240 in. 155 1b 250 lb 0.659 0.140 0.092 
9 480 in. 155 1b 125 lb 0.659 1.000 0.659 

TABLE 9. Effect of surface roughness. 

P[(M, 2 O) n 
Case Terrain V (mph) B k  Ph. P[M. 2 01 P[M. r 01 M, r 01 (M, a O)] 

1 Open 42.9 155 Ib 167 0.659 0.504 0.332 
10 Wooded 26 155 Ib 167 0.022 0.063 0.001 
11 City 15 155 Ib 167 0.000 0.004 -0.000 
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APPENDIX 

RELIABILITY ANALYSIS 

A tree is defined to be safe if the tree is sufficiently strong to resist a wind load h without cracking. 
Otherwise, it is classified as hazardous and is considered to be potentially dangerous. The mathematical 
models, Eqs. (1) and (6), and the inequalities (10a) and (lob) are used to classify safe and potential 
hazard conditions. Likewise, Eqs. (2) and (6) and the inequalities (l2a) and (l2b) are used for predicting 
the no collapse and collapse condition of a tree. The essence of the classification method is summarized 
by evaluating these equations. This procedure is considered incomplete because of the uncertainties 
associated with estimating the model input variables of Eqs. (1) through (9); as a result, probabilistic 
methods will be used. The purpose of the Appendix is to explain in more detail the derivation of Eqs. 
(12a), (12b), (15a), and (15b). 

The variables h, h,, and h, will be treated as random variables, H, H,, and H,. The classification 
scheme in terms of the random variable is as follows: 

Safe: P[H < Hcl 
Hazard: P[H r H,] 
No collapse: P[H < H, I H 2 H,] 
Collapse: P[H r H, ( H r H,] 

where P[H < H,] is the probability that the wind force is less than the critical load %. P[H 2 H,] is 
the probability that the wind force is equal to or greater than the cracking load H., P[H 5 H,IH 2 
H,] is the probability that the wind force is less than the ultimate load given that radial cracking has 
occurred, and P[H 2 H, I H 2 H,] is the probability that the wind forces is equal to or greater than 
the ultimate load given that radial cracking has occurred. The no collapse and collapse classifications 
explicitly incorporate the assumption that collapse is preceded by radial cracking. 

Margin of safety 

The concept of margin of safety, Eqs. (1 1) and (14), will be used to evaluate these probabilities. The 
margin of safety M, a random variable, is defined as the difference between the applied load H and 
resistance loads H, or H,. For cracking, M, = H - H, and for collapse Mu = H - H,. By rewriting 
the probability equations, the classification scheme equations in terms of M, and Mu are 

Safe: P[H - H, i 01 = P[M, < 01 
Hazard: P[H - H, z 01 = P[M, 2 01 
Nocollapse: P [ H - H , < O J H - H , 2 0 ] = P [ M u < O I M , ~ 0 ]  
Collapse: P[H - H, r OIH - H, 2 01 = P[M, 2 OIM, 2 01 

By the total probability theorem, P[M, < 0] + P[M, r 0] = 1.0 and P[M, < O)M, r 01 + P[M, r 
0 I M, 2 01 = 1 .O. Since the safe and hazard and the no collapse and collapse classes are simply related, 
the remaining discussion is restricted to the hazard and collapse classification equations. 

In order to calculate these probabilities, the probability distributions f,(h), f,Jh,) and fHu(h,J must 
be known. Owing to insufficient statistical data, these distributions can only be estimated. The first 
order approximation (Ang and Tang 1984) will be used; the means pH, pH< and pH" and standard 
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deviations, a,, uHC, and uHu of H, H,, and H,, respectively, will be estimated. Furthermore, it will be 
assumed that the random variables H, H,, and H, are adequately defined with the normal probability 
distribution. The probabilities will be determined with the use of the cumulative unit normal distri- 
bution. 

The hazard event 

The probability that a tree is a hazard is 

with 

and, for statistically independent random variables, 

uw = (uHZ + uH,Z)* 

The collapse event 

The probability of tree collapse is 

P[M, > 0 I M, 2 01 = F,[u] 

with 

Sources of uncertainty 

Examination of Eqs. (1) through (9) shows that the mathematical predictions will be dependent 
upon the accuracy in measuring the input variables, do, dof, d,, d,', and d,,. Since these model variables 
are considered a source of measurement error, they are treated as uniformly distributed random 
variables, Do, Do', D,, D,', and D,,. The moment arm estimate is assumed to be a normally distributed 
random variable E. It is expected that these variables may be accurately measured within the ranges 
shown in Table 1. The physical properties of 7 ,  u, and m are also sources of uncertainty, called sources 
of inherent variability error. As a result, they are treated as random variables, T, Z, and M. The critical 
shear cracking and modulus of rupture are assumed to be normally distributed random variables with 
means and coefficients of variation shown in Table 2. It is assumed that the moisture content is 
adequately described with a uniform distribution with a range between 0.6 and 0.8. 

The estimate of uncertainty is assumed to be associated with measurement error and inherit vari- 
ability. Thus, the coefficient of variation of each input variable X,  a,, is estimated as 

R, = (6,2 + Ax2)'h 

where A, = coefficient of variation of inherent variability and 6, = coefficient of variation of mea- 
surement error. 

The models of H, H,, and H, are functions of the input random variables 

H = g(V = v, W, M, D,,) 

H, = g(T, Do, Dl) 
H, = g(Z, Do', D,', I, C,  E) 

The wind speed v is assumed to be known for this part of the discussion; thus the random variable 
for wind speed V is equal to V = v. For simplicity in notation, these models will be represented in 
the generic model 

P = g(X,, x2, . . . , X,) 
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where ? = model output, a random variable, and the codel input random variables, XI, X2, . . . , 
X,. The relationship between the actual value of Y and Y, the model estimated value, is 

Y = N,.? 

where N, = model bias factor and a random variable. The predicted mean value of Y is 

where u, = average bias factor, p,,, fix>, . . . , fix" = average estimates of XI, X,, . . . , X,, fig = expected 
value of g(p,,, fix,, . . . , fix") and fi, = expected output. The average bias factors for H, and H, were 
calculated by Peters et al. (1984) and are shown in Table 3. It is assumed that the regression equation 
derived by Fraser is assumed to be a non-biased estimator. The coefficient of variation of Y, assuming 
no correlation between the input variables, is equal to 

where 

A, = coefficient of variation of model error, 

ag c, = - evaluated at p,,, p,,, . . . , pXn, 
ax, 

and 

The means and coefficient of variations for H,, H,, and H are determined using Eqs. (20) and (21). 
The relationships for these random variables are determined as follows. 

The critical cracking load H, 

The deterministic model for the critical cracking load is given by Eq. (1): 

From Eq. (21), the coefficient of variation is 

where the estimated mean for random variable H, 

with partial deviations: 

ah, 1 (do4 - a4)  
" = a7 = 2.089 (2.25dO2 + dl2) 

ah" c - - =  
- ad, 

The ultimate load, H,  

The deterministic model for the ultimate load is given by Eq. (2): 
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From Eq. (2 I), the coefficient of variation is 

The means and coefficients of variation for I and c are estimated with the following relationships. 
The deterministic model for I is given by Eq. (4): 

The coefficient of variation for I, is 

with the estimated mean of random variable I is 

and the partial derivatives are 

a1 1 (d," - 4'3)d,'2 1 (4'3 - 4'3)2dOr c d . = - = - d r 3  - -  + -  
" ad,' 32 " 3~ (dof2 - dl'>) 9p (dO12 - 4'2)2 

a1 ?r 1 (do3 - 4'3)d,'2 1 (4'3 - di13)24' 
32 d," + - c d , = 7 =  -- - - 

ad, 3* (dof2 - d,I2) 9* (d,'2 - d,I2)2 

The deterministic model for c is given by Eq. (5): 

The coefficient of variation, Eq. (2 I), for c, is 

with 

ac - 2412 4 (do" - 4I3)d,' * '  - - - - - 
' - ad,' *(d,'> - dlC2) 3* (dotZ - d,'2)2 

The wind load H 

The deterministic model for wind loading is given by Eq. (6): 

h = 1 . 4 4 1 ~  + 0 . 0 2 9 ~ ~  - 0 . 3 2 8 ~  + 7.426 

The coefficient of variation, Eq. (21), is 

ah2 ( C ~ Q ~ P W / P ~ ) ~  + Ah2 

with the estimated mean of the random variable H is 

ph = 1 . 4 4 1 ~  + 0 . 0 2 9 ~ ~ ~  - 0 . 3 2 8 ~ ~  + 7.426 

and the partial derivative of 



186 WOOD AND FIBER SCIENCE, JANUARY 1986, V. 18( 1) 

The mean and coefficient of variation of W is estimated with the following relationships: 

The coefficient of variation, Eq. (21), for random variable W is 

with the estimated mean of W equal to 

The coefficients of variation for H, H,, H,, w, c, F, and e are given in Table 4. These values are 
determined for a tree described as case 1 where d, = 6 in., di = 4.6 in., d,' = 5.7 in., di' = 3.3 in., 
dbh = 4.8 in., and 1 = 360 in. The sources of measurement error, tree strength and inherent variability, 
and model uncertainty used in these estimates are given in Tables 1, 2, and 3. 

SYMBOLS 

c = critical distance between neutral axis of bending and extreme fiber 
d, d' = diameter 
dbh = breast height diameter 
e, E = moment arm 

h, H = applied horizontal force or tree resistance load 
I = moment of inertia of half hollow cylinder 

L = tree height 
M = margin of safety 
m = moisture content 
u = standard unit normal deviate 
v = wind speed 
w = weight of tree 
p = mean 

6 ,  A, fl = coefficient of variation of measurement error, inherit variability, and total 
T = shear strength 
o = modulus of rupture or standard deviation 

Subscripts 

c = radial cracking 
i = decay column 
o = outside of tree 
s = dry weight 
u = ultimate or collapse load 
x = model input variable 
y = model output variable 




