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abstract

Quality inconsistencies can be caused by processes with multiple sources of variation. Therefore, the de-
velopment of control charts that perform properly for both producer’s and consumer’s risk can be very
complex. This is particularly true for real-time SPC systems that collect a great deal of data through non-
contact sensing. In this paper, we demonstrate the use of a Monte Carlo simulation procedure that can be
used to test SPC charts for both consumer’s and producer’s risk, and an experimental design procedure to
analyze the results. This procedure is shown to be especially useful where design factors interact to cause
high variation in a quality characteristic of a product. The approach is illustrated for a practical problem
taken from the lumber manufacturing industry and demonstrates that commonly used industrial practices
to control product dimensions lead to erroneous conclusions. To that end, a new mathematical approach
that yields the correct results is described. The Simulation /ANOVA procedure described in this paper may
have applicability in the control of many other industrial processes.

Keywords: Lumber size control, statistical process control (SPC), control charts, lumber manufacturing,
simulation.

introduction

Lumber production in a modern sawmill is a
high-speed process, and dimensional variation
of lumber as a result of inaccurate sawing is
commonplace. There exist many sources of var-
iation in sawing lumber, and modeling this in-
dustrial process is not a simple task. At the
simplest level, two very important sources of
variation must be taken into account and con-
trolled: (1) sawing variation is the variation at-
tributed to the movement or vibration of the

work piece or saw during the cut; and (2) set
works variation is the variation caused by lack
of repeatability in the mechanism that sets the
saw placement, or in differences between the
thickness of the saw guides or spacers in fixed-
position gang saws.

Control charts are statistical process control
(SPC) tools that have been commonly deployed as
a means for sawmills to understand and control di-
mensional variation. Typically, lumber is sampled
once or twice per shift, which involves pulling five
to ten pieces out of production and measuring their
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thickness and/or width (depending on the cut) in
six to ten fixed locations. These data are used to
compute sample means and variances, which in
turn, are used in the construction of SPC charts
that relate process averages and dispersion infor-
mation to fixed target levels. It should be noted
that setting control limits for SPC charts depends
on the practitioner’s ability to estimate the total
variation inherent in the sawing system and to cor-
rectly identify and quantify the different sources of
this variation present in the system.

Control charts are based on the idea of a sta-
tistical hypothesis test (Montgomery 2001).
Consequently, their use carries an associated
risk or probability of committing Type I Errors
(called producer’s risk), and Type II Errors
(called consumer’s risk). In the context of SPC,
producer’s risk is the probability of a false
alarm, indicating the presence of assignable
causes when the sawing process is, in fact,
working normally. Consumer’s risk is the prob-
ability that the control chart fails to detect the
presence of assignable causes in a sawing pro-
cess that is malfunctioning. Both incur costs to
the producer for obvious reasons. Control charts
are generally set up with what are called 3-
sigma control limits, which result in a very
small producer’s risk. The 3-sigma control lim-
its refer to the distance of �/–3 standard devia-
tion units from the center line to the control
limits. The level of consumer’s risk present in a
control chart depends on the magnitude of the
malfunctioning sawing process. If the control
limits are set up incorrectly, then the charts
won’t perform as expected.

Control charts have been widely used in lum-
ber production and have been successful in con-
trolling and reducing dimensional variation.
These methods have worked in the past, as man-
ual size measurement precluded the use of large
sample sizes. However, the advancement of
technology currently presents a problem with re-
spect to the use of these SPC tools. Specifically,
the trend towards non-contact laser measuring
systems means that thousands of board dimen-
sions can be measured in real-time as opposed to
100 or less using traditional sampling and hand-
held devices. While intuitively this richness in

data would seem to yield more precise results,
this does not seem to be the case. In fact, anec-
dotal evidence points to a higher than expected
producer’s risk, indicated by an alarmingly high
number of “out-of-control” situations when real-
time data are applied to traditional SPC tools.
Mills using traditional SPC tools in a real-time
context are finding that their statistical process
control limits are too narrow, resulting in an ex-
cessive number of “false alarms” and putting
them in the untenable position of having to man-
ually widen their control limits to capture the ex-
pected number of out-of-control boards. Suffice
it to say, this “trial and error” approach is mathe-
matically unfounded. Traditional SPC tools are
simply not robust enough to correctly process
the virtually limitless data points that real-time
scanning can provide.

These anecdotal results have led us to investi-
gate the performance of traditional SPC tools ap-
plied to lumber size data with respect to
producer’s and consumer’s risk, and to develop a
new statistical foundation for lumber size con-
trol. This paper is the third in a series aimed at
developing a mathematical basis for real-time
size control in wood products manufacturing. In
the first paper of the series, we reviewed the his-
tory and development of SPC systems used in
wood processing (Maness et al. 2002). Inconsis-
tencies were found in the way that sawing varia-
tion is estimated, and in the way that control
limits for SPC charts are determined. In the sec-
ond paper, we proposed a new statistical founda-
tion for real-time SPC for lumber sizes (Maness
et al. 2003). In this paper, we describe a method
for comparing the reliability of SPC tools, and
we use this reliability testing method to compare
the performance of the new SPC system with
those previously described.

Traditional approaches to size control

In a typical lumber size control system, m
boards are selected randomly as they leave a ma-
chine center, and n thickness measurements are
taken at random locations along the length of the
board. Typically, saw or part positioning (re-
peatability) causes variation between boards.
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Saw vibration or board movement during the cut
causes size variation within each board. For this
reason, it is important to partition the variation
into its respective components: between- and
within-board variation. Herein lies the difficulty.

When machining occurs as described above,
the thickness of a piece of lumber at any point on
its surface can be thought of as being a function
of two random disturbance terms. The first term,
�i, is saw position, which affects each board. The
second term, �ij, is the random sawing error,
which occurs along each board during the cut.
The thickness of the ith board measured at point
j, yij, is then given by:

yij � � � �i � �ij (1)

where:
� � target size for the sawing machine;
�i � deviation from correct set works position

for board i (causing variation between
boards); and

�ij � saw movement or vibration error at posi-
tion j on board i (causing variation within
boards).

The distribution of � and � can be estimated
through empirical study. For this discussion, we
assume the following:

� ~ NID(0, �2
w)

� ~ NID(0, �2
b)

We also assume that �ij and �i are independent.
In our review of the literature, we found two

distinct methods for estimating the standard
error of the mean, and therefore the control lim-
its (Maness et al. 2002). In addition, anecdotal
evidence has shown us that these methods are
commonly used in the lumber industry. For
shorthand purposes, we call these two Common
Lumber Industry methods CLI Method #1 and
CLI Method #2.

CLI Method #1 is based on an analysis of
variance (ANOVA) partitioning of the variances
in a completely randomized design (CRD). The
total sawing variance was obtained as the sum 
of the partitioned variances as shown below in
Eq (2).

(2)ˆ ˆ ˆσ σ σy b w
2 2 2= +

where:

The standard error of the mean, which is used
to determine the control limits on a standard X-
Bar Chart, was found by dividing the total vari-
ance by the sample size, and taking the square
root (Whitehead 1978):

(3)

where:

In CLI Method #2, the total standard deviation
is calculated in the usual fashion from all n mea-
surements on m boards included in the kth sample
(Smithies 1991):

(4)

where:

To ensure that the control charts function
properly, it is important to ensure that the total
standard deviation represents within-sample
variability only (Montgomery 2001). To obtain
an estimate of the within-sample standard devia-
tion, the average is obtained over a group of k
samples taken when the process is working cor-
rectly. Since the sample standard deviation is a
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biased estimator of �, the result must be divided
by the statistical constant c4 to obtain an unbi-
ased estimator.1 Therefore, an estimate of the
total sample standard deviation using CLI
Method # 2 is given in Eq. (5).

(5)

where:
r � the number of subgroups.

The total standard deviation is then divided by
the square root of the total number of observa-
tions in the sample to get an estimate of the stan-
dard error of the mean:

ˆ
ˆ

σ
σ

y

y
k

r

r c2

2
1

4

=
⋅

=
∑
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Table 1. Control charts based on the CLI Methods #1 and #2 and the resulting calculations of control limits2 (from
Maness et al. 2002).

CLI Method #1

Type of Control Chart Variance Estimator Control Limits

X Bar chart for sample Standard Error of the Mean
average

S Chart for total board 
variation

S Chart for within board
variation

S Chart for between board 
variation

CLI Method #2

Type of control chart Variance estimator Control limits

X Bar chart for sample Standard error of the mean
average

S Chart for total board 
variation

S Chart for within board
Same as CLI method #1 Same as CLI method #1variation

S Chart for between board Variance of the Not applicable 
variation board averages using this approach3

2. The statistical constants, B3 and B4, used in this table are commonly used in control chart applications and can be found in Montgomery (2001). They are
based on confidence limits derived from the Chi-Square distribution with the appropriate corrections for bias.

3. The between board variance using CLI Method #2 is a biased estimator because it is partially composed of the within board variance. See Maness et al. (2002)
for a more detailed explanation.

σ̂ y
2

1
in Eq. [3]

UCL: µ̂ σ+ 3
1

ˆ
y

LCL: µ̂ σ– ˆ3
1y

σ̂ y1
2 as in Eq. [2]

UCL: 4B yσ̂
1

LCL: 3B yσ̂
1

σ̂ w
2  from ANOVA

UCL: 4B wσ̂

LCL: 3B wσ̂

σ̂ b
2 from ANOVA

UCL: 4B bσ̂

LCL: 3B bσ̂

σ̂ y2

2  in Eq. [6]

σ̂ y2
2  as in Eq. [5]

UCL: µ̂ + 3
2

σ̂ y

LCL: µ̂ – ˆ3
2

σ y

UCL: 4B yσ̂
2

UCL: 3B ŷσ
2

1. See Montgomery (2001) section 3.2 for a further ex-
planation of this concept and derivation of the statistical
constant c4.



(6)

The four control charts arising from CLI Meth-
ods #1 and #2 are each presented in Table 1.

In our previous studies, we detected several
problems with the two CLI approaches (Maness
et al. 2002, 2003). These problems arise because
the two sources of variation in lumber sizes were
not properly taken into account when construct-
ing the experimental design. An approach for
partitioning variation where there are several
components of variability in manufacturing was
introduced by Woodall and Thomas (1995).
Maness et al. (2003) developed a similar ap-
proach adapted to the typical lumber SPC sam-
pling scheme. We call this the Components of
Variation (COV) approach.

Using this approach and the model previously
given in Eq. (1), � and � are assumed to be inde-
pendent and identically distributed normal vari-
ables with zero mean. Thus, the set works position

ˆ
ˆ

σ
σ

y

y

nm2

2=
deviation distribution is � � N (0, �2

b), and the
saw movement distribution is ε � N (0, �2

w).
Under these assumptions, Eq. (1) becomes a ran-
dom effects ANOVA model, and the properties of
the random effects model can be used to construct
control charts for SPC.

There are four valid control charts using this
model: (1) an X-Bar Chart for subgroup means;
(2) an S Chart to control within-board variation;
(3) an S Chart to control between-board varia-
tion using the Satterthwaite procedure (Gaylor
and Hopper 1969); and (4) a chart showing the
proportion of total sawing variation accounted
for by between-board variation. The four control
charts and their resulting control limits are given
in Table 2. The full derivation of these control
limits can be found in Maness et al. (2003).

As described above, the X-Bar Chart is based
on the variance of the subgroup means. How-
ever, because of the two distinct sources of vari-
ation, the variance of the subgroup means under
the random effects model is more complex than
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Table 2. Control charts based on the COV Method and the resulting formulae for calculating control limits4 (from Maness
et al. 2003).

COV method

Type of control chart Variance estimator Control limits

X Bar chart for sample Standard error of the mean
average

S Chart for within-board 
variation same as CLI Method #1 same as CLI Method #1

S Chart for between board 
variation using Satterthwaite 
procedure

COV Chart proportion of 
variation made up by between-
board variation

4. See footnote 2.

Mean,  ˆ  in Eq.[7]σ yCOV

2 ,

σ̂ b
2 from ANOVA

ˆ

ˆ ˆ
,

σ
σ σ

b

w b

2

2 2+
 where

ˆ , ˆσ σw b
2 2  as above

UCL: µ̂ σ+ 3 ˆ
yCOV

LCL: µ̂ σ– ˆ3 yCOV

UCL  ˆ5:
– / ;σ

χ α
b
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df
2 1 2

2
[ ]
( )
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/ ;σ

χ α
b
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2 2

2
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F n

F n n

w b w

w b w

1 2
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1 2
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– /
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that used in either CLI approach. The true vari-
ance of the subgroup means under the random
effects model for the COV approach is given by
Neter et al. (1996):

(7)

To our knowledge, the performance of these
methods has never been empirically tested. There-
fore, the main objectives of this research are:

1. to develop a methodology for estimating pro-
ducer’s and consumer’s risk in SPC models
for lumber size control;

2. to use this approach to test the reliability of
the two methods used in practice under a
real-time situation compared to the COV ap-
proach;

3. to recommend an approach for real-time SPC.

To meet these objectives, we use Monte Carlo
simulation to test the number of out-of-control
indications obtained versus the expected number
based on the known theoretical properties of the
underlying mathematical distribution. In addi-
tion, the robustness of each method was tested
by means of sensitivity analyses on five factors:
the number of measurements per board (n); the
number of boards per sample (m); the board tar-
get size (�); the between-board variation (�2

b);
and, the within-board variation (�2

w).

methods

Simulation approach

Our purpose is to test the performance of the
nine different SPC charts described above. These
are: the 4 SPC charts using CLI Method #1; the
two additional charts using CLI Method #2; and
the three new charts using the COV Method (the
within-board chart using the COV method is
mathematical equivalent to the within board
chart using CLI Method #1).

A Monte Carlo simulation program for evaluat-
ing the SPC charts was written in Visual Basic for
Applications using a Microsoft Excel interface.
The program simulated random board thicknesses

ˆ
ˆ ˆ

covσ σ σ
y

b w

m nm
2

2 2

= +

using the model described in Eq. (1) with various
known distributional assumptions. Control limits
for the nine control charts were calculated based
on the known population parameters as listed in
Table 3. The simulated lumber thicknesses were
then used in each of the control charts, and the
number of out-of-control conditions was calcu-
lated for each situation. The results were then an-
alyzed with Analysis of Variance to compare the
performance of the nine control charts.

Experimental design

This simulation was replicated for each of the
five factors at three different levels using a 3k ex-
perimental design. The response variable for the
experiment is the number of out-of-control
(OOC) conditions signaled by the control charts.
This experimental design allows us to look at the
factors causing excessive OOC conditions and
also to determine if there are significant interac-
tion effects between the factors.

This factorial design results in a design matrix
consisting of 35 � 243 experimental runs for
each of the nine control charts that we wish to
test. In addition, we conducted the experiment to
evaluate the performance of the chart with re-
spect to both producer’s and consumer’s risk
(Tables 3 and 4). Therefore, the full experiment
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Table 3. Experimental values used in Eq [1] for the pro-
ducer’s risk experiment.

Factor levels

Factor Low Medium High

x1: n 10 30 50
x2: m 10 30 50
x3: � 1.660″ 1.680″ 1.700″
x4: �2

b 0.005″ 0.020″ 0.035″
x5: �2

w 0.005″ 0.020″ 0.035″

Coded level –1 0 �1

5. Degrees of freedom, df, are defined as: 

.

df
n

MS

m

MS

m n

b

TR E

=
+

( ˆ )

– ( – )

σ 2 2

2 2

1 1



consists of 243 runs * 9 charts * 2 types of risk,
or 4374 experimental runs.

We use a regression model to present the re-
sults of the designed experiment.6 Since our fac-
tor levels are quantitative and equally spaced, we
coded the factor variables to the levels of –1, 0,
and �1, which correspond to low, medium and
high levels of the factors. This facilitates the
analyses of the resulting regression coefficients.

In this experimental design, there are five
main effects and 32 possible interaction effects.
In order to reduce the complexity of the analysis,
we chose to limit our analysis to the ten two-way
interactions. Further, the results of a pilot study
showed there were no significant interactions as-
sociated with target size (�). Thus, we limited
our analysis to the five main effects and the fol-
lowing six interaction effects:

The resulting regression model is:

(8)

where:
y � number of out-of-control conditions

(OOC’s) per 1000 sample points

y x x x x x

x x x x x x

x x x x

= + + + + +
+ + +
+ + +

β β β β β β
β β β
β β ε

0 1 1 2 2 3 3 4 4 5 5

23 2 3 24 2 4 25 2 5

34 3 4 35 3 5

  

 

n m n m n mb b w w w b* * * * * *          σ σ σ σ σ σ2 2 2 2 2 2

�0 � model intercept (corresponds to the aver-
age number of OOC’s)

�i � regression coefficients
xi � factors (see Table 3 for definitions)
ε � model error

We evaluated the results of each experiment in
the following manner:

Compare the actual observed number of
OOCs with the expected number based on the
design of the chart and the chosen value of the
producer’s risk, �.

1. Study the main factor effects to determine
their impact on the number of OOCs. If the
chart is working correctly, there should be
no significant impact of the main effects on
producer’s risk, but the appropriate factors
should have an impact on consumer’s risk.
That is, increasing � should have a signifi-
cant impact on the performance of the X-
Bar Chart, increasing �2

w should have an
impact on the S Chart for within-board vari-
ation and so on.

2. Study two factor interaction terms to deter-
mine their impact on the number of OOCs.
There should be no significant impact on
producer’s risk, but the factor interaction
with m and n should have an impact on con-
sumer’s risk.

The complete analysis of a control chart in
this manner will allow the researcher to under-
stand not only if the control tool is working
properly, but also to diagnose why it is not work-
ing properly and to understand the conditions
under which the tool will yield biased results.
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Table 4. Experimental values used in Eq [1] for the consumer’s risk experiment.

Base case for
Factor levels evaluating

Factor Low Medium High consumer’s risk

x1: n 10 30 50 n/a
x2: m 10 30 50 n/a
x3: � 1.685″ 1.690″ 1.695″ 1.680″
x4: �2

b 0.025″ 0.030″ 0.035″ 0.020″
x5: �2

w 0.025″ 0.030″ 0.035″ 0.020″

Coded Level –1 0 �1 n/a

6.  A full description of the regression approach for ana-
lyzing the 3k design can be found in Montgomery (1997).



Board thickness data generation

Board thickness data were generated to simu-
late the sawing process of a computer-controlled
band saw set works. Using the model given by
Eq. (1), a computer simulation program simu-
lated a size control “sample” consisting of m
boards with n measurements on each board. To
accomplish this, a random number was gener-
ated for each of the m boards in the sample to
simulate the saw position error (�i). Then, n ran-
dom numbers were generated to simulate the
random saw movement error (�ij) for each mea-
surement. Equation (1) was then used to gener-
ate the n 	 m thickness measurements for a
given target size (�). Both random disturbance
terms were generated using the SAS function
RANNOR (SAS Institute 1999), which returns a
variate that is generated from a normal distribu-
tion with mean 0 and variance 1. The board
thicknesses could follow any sampling distribu-
tion and the reliability testing procedure outlined
in this paper would still work. However, new
control charts would have to be developed that
work well for non-normal data.

The simulation program allows the user to run
R iterations, each iteration creating a simulated
“sample” of m boards measured at n places along
the board based on the three population parame-
ters for the distribution of lumber thickness:

1. the lumber target size (�);
2. the disturbance term for the overall saw

movement �ij (�2
w); and

3. the disturbance term for the setworks place-
ment �i (�2

b).

For our experiment, we chose R � 1000,
meaning that we generated 1000 sample points
for each experimental run.

Determination of control limits and evaluation
of chart performance

The upper and lower control limits for each of
the nine SPC charts under study were calculated
using the three underlying population parame-
ters that were used to generate the board mea-
surements. To evaluate producer’s risk for a
given control chart, we calculated the control
limits based on the population parameters for
each experimental case over the entire experi-
mental range of the parameters in Table 3. From
this, we determined the probability of a Type I
error over a wide range of conditions. For a 3-
sigma control chart monitoring an “in-control”
situation, we expect 99.73% of the sample points
to be within the upper and lower control limits
based on statistical theory.

To evaluate consumer’s risk, we calculated the
control limits using the population parameters for
an “in-control” condition. The values we used are
those listed in Table 4 in the column labeled “Base
Case for Evaluating Consumer’s Risk.” We then
tested the performance of the control charts in de-
tecting an “out-of-control” condition by generat-
ing the board measurement data using the
parameters in Eq. (1) over the entire experimental
range. In this situation, the low and high factor
levels simulate the performance of the SPC charts
in an “out-of-control” situation. The appropriate
control charts were then used to detect the change
both below and above the target value for each of
the population parameters.
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Table 5. Comparison of calculated control limits for each
of the nine charts using the population parameters for the
base case for evaluating consumer’s risk.

X-Bar charts for process avg

Chart UCL LCL

CLI #1 1.68283 1.67717
CLI #2 1.68281 1.67719
COV Approach 1.69114 1.66886

Charts for total variation

Chart UCL LCL

CLI #1 0.03029 0.02628
CLI #2 0.03004 0.02607

Charts for between-board variation

Chart UCL LCL

CLI #1 0.02809 0.01251
Satterthwaite method 0.02839 0.01225
COV method 0.67119 0.26857

Charts for within-board variation

Chart UCL LCL

COV method 0.02144 0.01856



results and discussion

Determination of control limits

To illustrate the differences in methods, the
upper and lower control limits for each of the
nine charts are presented in Table 5. The popula-
tion parameters at the low factor levels given in
Table 3 were used to calculate the control limits
in Table 5. The control limits are based on � �
0.27%, which corresponds to 3-sigma limits on a
standard control chart.

Evaluation for producer’s risk

The Monte Carlo simulation procedure was
executed for 1000 sample points using the 3-
sigma control limits described above. Given the
design of the charts and simulated normally dis-
tributed data described in the previous section,
this would result in an average of 2.7 out-of-
control sample points (OOCs) if the chart is
working properly. We evaluated the lower and

upper control limits separately, and given the
symmetric nature of the underlying normal dis-
tribution, we therefore expected approximately
1.35 OOCs per simulation.

Table 6 shows the regression statistics for the
first group of experimental trials, which evaluate
the performance of the lower control limit of the
X-Bar Chart using CLI Method 1. The regres-
sion is highly significant by the model F statistic,
and the R-square indicates that 89% of the vari-
ability in the out of controls is explained by the
experimental factors.

Examination of the model coefficients yields
interesting results with respect to the perfor-
mance of this chart. Note that the model should
yield about 1.35 OOCs no matter what the factor
levels are. However, it can be seen that, on aver-
age, there are 150 OOCs, and the number of
OOCs increases rapidly as a function of the
number of measurements per board (n), and the
between-board variation (�b). This agrees with
the theoretical analysis of the method. The inter-
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Table 6. Regression statistics for the lower bound of the X-Bar Chart using CLI Method #1 for producer’s risk.

Regression statistics

Multiple R 0.945
R square 0.893
Standard error of estimate 34.130
Observations 243.000

ANOVA table

df SS MS F Significance

Regression 11 2,250,445.1 204,585.9 175.6 <0.0001
Residual 231 269,147.1 1,165.1
Total 242 2,519,592.2

Model coefficients

Model Standard
Factor coefficients error t Stat p-value

�0 Intercept 150.45 2.19 68.71 <0.0001
�1 n (meas) 63.25 2.68 23.59 <0.0001
�2 m (brds) –9.33 2.68 –3.48 0.0006
�3 µ 1.35 2.68 0.50 0.6163
�4 �b 71.26 2.68 26.57 <0.0001
�5 �w –61.52 2.68 –22.94 <0.0001
�12 n * m 2.79 3.28 0.85 0.3970
�14 n * �b 23.56 3.28 7.17 <0.0001
�24 m * �b –0.83 3.28 –0.25 0.7999
�15 n * �w –15.49 3.28 –4.72 <0.0001
�25 m * �b 0.82 3.28 0.25 0.8021
�45 �w * �b 24.59 3.28 7.49 <0.0001



action of n and both components of variation are
significant as well as the interaction between the
two components of variation. Since the interac-
tion of n and �w is negative, this indicates that an
increase in the within-board variance will miti-
gate increases in the number of OOCs caused by
increases in n. It is also interesting to note the
negative coefficient associated with the main
factor effect of within-board variation. This indi-
cates that if all other factors are held constant,
the number of OOCs decreases significantly
with an increase in within-board variation.
Lastly, the large significant interaction between
the two components of variance is also of inter-
est because it indicates that the performance of
the chart is affected by the relative ratio of be-
tween- to within-board variation.

All of these findings agree with the previous
analysis of the performance of this chart relative
to producer’s risk on theoretical grounds
(Maness et al. 2002). This provides validation
for the theory and allows us to confidently inter-
pret the coefficients for evaluating performance.

Full analysis of all nine control charts for both
upper and lower control limits would result in 18
tables similar to Table 6. For brevity, we collapse
the important information from these 18 tables
into one matrix displayed in Table 7, which lists
the model significance (based on the F test), R2,
and the model coefficients that are significant at
the 0.05 level. The orthogonal nature of the input
data matrix allows us to delete insignificant co-
efficients without having to recalculate the re-
maining ones.

Examination of Table 7 yields a complete pic-
ture of the performance of the charts. The model
intercept is the average number of OOCs signaled
per 1,000 sample points (since this is the predic-
tion when all model inputs are at the medium
level, or 0). Assuming the model is correct, we ex-
pect 1.35 OOCs per 1,000, and thus, the intercept
should be close to 1.35. We also expect a low R2,
which indicates that little of the variation in the
predicted number of OOCs is explained by the
factors. The causes of poor chart performance are
indicated by significant model coefficients. Large,
significant coefficients indicate that the perfor-
mance of the chart is adversely impacted (if posi-

tive) or mitigated (if negative) by that factor. The
magnitude of the coefficient directly corresponds
to the number of OOCs as one moves from the
low factor level (–1) to the medium level (0), or
from the medium to high level (�1).

Only the charts based on the COV approach
and the Sw Chart yield the expected results. The
performance of the S Chart for between-board
variation based on the Satterthwaite formula is
acceptable for the upper limit but not for the
lower limit. One reason for this is that the esti-
mate of between-board variance can be negative
when within-board variation is large relative to
between-board variation. However, it is more
likely due to the inherent limitations of the Sat-
terthwaite procedure. Gaylor and Hopper (1969)
give guidelines for its use, noting that it is appro-
priate only when:

This condition is not satisfied when �b�0.005
and �w�0.020 or 0.035, and when �b�0.020,
�w�0.020, and n�m�10. Since these cases ac-
count for 57 or the 81 experimental runs, it is not
surprising that this chart does not yield the cor-
rect number of OOCs.

It is important to note that the performance of
all charts based on the CLI methods is very poor.
Taking into account OOCs on both the lower and
upper limits, the X-Bar Charts under both CLI
Methods yielded about 350 OOCs on average
(130 times the expected). The results for both
CLI St charts were similar. More than 250 OOCs
occurred on average, or almost 100 times the ex-
pected number. Results for the CLI Sb charts
were not as severe, where an average of 60 OOCs
were reported; however, this result is still more
than 20 times the expected number. In all cases,
performance is severely impacted as the number
of measurements per board and the between-
board variation increase relative to the other fac-
tors. These charts are frequently used in the
industry and should be replaced immediately.

It is also interesting to note that the perfor-
mance of the upper control limit for the X-Bar
Chart based on the COV approach was sensitive

MS

MS
F df df F df dfB
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to the relative ratio of the between- and within-
board variation. However, the magnitude of the
impact was within the expected range—even
when �2

b is at the high level and �2
w is at the low

level, the resulting number of OOCs is still
below the expected level of 2.7 OOCs.

Evaluation for consumer’s risk

The Monte Carlo simulation procedure was
again executed for 1000 sample points using the
control limits in Table 5. However, since the X-
Bar, Sb, and St charts based on the CLI ap-
proaches failed to perform properly on
producer’s risk, their sensitivity regarding con-
sumer’s risk would have no meaning. Therefore,
consumer’s risk was evaluated only for the 2
charts based on the COV, the Sw chart, and the Sb
chart derived from the Satterthwaite method.

The results of the COV based X-Bar Chart are
shown in Table 8. Note that the model is highly

significant (by the F test), and the high R2 indicates
that the experimental factors account for 90% of
the variation in OOCs. Only three coefficients are
significant at the 0.05 level: the intercept, and the
coefficients for m and � This indicates that the
chart behaves as expected. As m increases, the
chart will have more statistical power to detect a
shift in �. As � increases, the chart responds by in-
dicating 265.77 more OOCs for every factor level
increase (0.005″) in the mean.

The results of the COV-based Sb chart are
shown in Table 9. The model is highly significant,
but the R2 is smaller than in the previous chart, in-
dicating that less of the variation in the OOCs can
be explained by the experimental factors. Seven
coefficients are significant at the 0.05 level, which
is indicative of the complex behavior of the COV
Chart. Of importance is the interaction term be-
tween �2

b and �2
w. This interaction is significant

because the COV measures the relative ratio of
between-board variation to total variation. There-
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Table 8. Regression statistics for the Upper Bound of the X-Bar Chart using the COV Method for consumer’s risk.

Regression statistics

Multiple R 0.951
R square 0.904
Standard error of estimate 92.500
Observations 243.000

ANOVA table

df SS MS F Significance

Regression 11 18,580,723.2 1,689,156.7 197.4 <0.0001
Residual 231 1,976,516.7 8,556.3
Total 242 20,557,239.9

Model coefficients

Model Standard
Factor coefficients error t Stat p-value

�0 Intercept 432.75 6.68 64.83 <0.0001
�1 n (meas) 9.93 8.13 1.22 0.2230
�2 m (brds) 204.31 8.13 25.14 <0.0001
�3 µ 265.77 7.27 36.57 <0.0001
�4 �b 8.60 6.68 1.29 0.1990
�5 �w 2.52 6.68 0.38 0.7066
�12 n * m –1.70 8.90 –0.19 0.8484
�14 n * �b –0.08 7.71 –0.01 0.9919
�24 m * �b –12.66 7.71 –1.64 0.1018
�15 n * �w –0.56 7.71 –0.07 0.9417
�25 m * �w –1.55 7.71 –0.20 0.8407
�45 �w * �b –0.57 6.68 –0.09 0.9318



fore, it is sensitive to a change in the factors (to-
gether or in isolation of the others) that change
this ratio. Thus, this chart must be interpreted with
care. Less out-of-controls result if �2

b increases
while �2

w stays the same, but more out-of-controls
result in the opposite situation.

The chart is also highly sensitive to changes in
the number of boards per sample (m). The chart’s
power to detect OOCs increases with an increas-
ing m, when all other factors are held constant.
This is mitigated, however, by increases in �2

b
and decreases in �2

w through the interaction
terms. Practitioners should understand fully the
behavior of this chart before designing a sam-
pling plan and implementing the chart.

The results for the Sw Chart are shown in
Table 10. The model is significant, but the R2 is
again smaller than in the previous chart. As ex-
pected, the coefficients associated with n, m, �2

w,
and their interactions are significant. The chart’s

power to discriminate increases with increasing
n and m, only when �2

w is held constant. In-
creases in �2

w cause more alarm indications only
when n and m are constant. This chart is very
sensitive, detecting even the smallest changes in
�2

w, because its degrees of freedom are a function
of m * n. Even when �2

w is at its lowest level (and
all other factors are at the medium level), the
chart still sent an out of control signal 979 out of
1000 times. Practitioners should take note of this
high number of OOCs when using this chart.

The results for the Sb Chart using the Satterth-
waite method are shown in Table 11. The rela-
tionship between the number of OOCs and the
factors is significant, and the R2 indicates that
the factors explain 69% of the variation in the
OOCs. This chart is very stable, as none of the
interaction effects are significant at the 0.05
level. Increases in m and �2

b increase the chart’s
discriminating power. Note that changes in �2

w
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Table 9. Regression statistics for the Upper Bound of the COV based Sb Chart for consumer’s risk.

Regression statistics

Multiple R 0.720
R square 0.518
Standard error of estimate 99.300
Observations 243.000

ANOVA table

df SS MS F Significance

Regression 11 2,453,712.5 223,064.8 22.6 <0.0001
Residual 231 2,279,904.0 9,869.7
Total 242 4,733,616.5

Model coefficients

Model Standard
Factor coefficients error t Stat p-value

�0 Intercept 58.38 7.17 8.14 <0.0001
�1 n (meas) 7.76 8.73 0.89 0.3748
�2 m (brds 45.22 8.73 5.18 <0.0001
�3 µ 0.54 7.81 0.07 0.9446
�4 �b 48.95 7.17 6.83 <0.0001
�5 �w –57.81 7.17 –8.06 <0.0001
�12 n * m –4.69 9.56 –0.49 0.6245
�14 n * �b 7.21 8.28 0.87 0.3845
�24 m * �b 45.74 8.28 5.52 <0.0001
�15 n * �w –5.36 8.28 –0.65 0.5183
�25 m * �b –30.11 8.28 –3.64 0.0003
�45 �w * �b –48.41 7.17 –6.75 <0.0001



do not effect the OOC signal rate as in the case
of the COV based Sb Chart.

conclusions

This study has developed a method to study
the performance of lumber size control systems
based on stochastic simulation procedures using
experimental design to analyze the results. The
method was used to investigate two SPC meth-
odologies commonly found in the lumber size
control literature versus those developed in the
general SPC literature. The COV method per-
formed as expected under the Central Limit The-
orem, providing an accurate assessment of the
Type I Error. Using the methods commonly used
in lumber size control, however, resulted in a
higher than expected number of Type I Errors or
an increased producer’s risk. In our experience,
these estimation methods are the ones com-
monly being used in industrial systems. Since
these charts are especially sensitive to increases

in the number of boards and number of measure-
ments per board, this is of particular concern for
real-time applications. Systems developers in
particular should take note of these results.

The simulation approach was also used to
study the behavior of the COV charts with re-
spect to consumer’s risk. The charts performed
as expected, with more out-of-controls when the
parameter being monitored shifted. The charts
also responded to changes in sampling rates,
with increased sensitivity for higher sampling
rates. These charts not only validate the COV
method, but give valuable information on the
impact of parameter shifts on control charts for
typical sawmill conditions.

All of the results reported rely on data simu-
lated from a normal distribution. Had a non-
symmetric distribution been chosen, such as the
log-normal, results would have been different.
Given the same control chart derivations and the
right-skewed log normal distribution, OOCs
would have been more prevalent for the upper
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Table 10. Regression statistics for the Upper Bound of the Sw Chart for consumer’s risk.

Regression statistics

Multiple R 0.542
R square 0.294
Standard error of estimate 64.400
Observations 243.000

ANOVA table

df SS MS F Significance

Regression 11 398,932.3 36,266.6 8.7 <0.0001
Residual 231 959,000.3 4,151.5
Total 242 1,357,932.6

Model coefficients

Model Standard
Factor coefficients error t Stat p-value

�0 Intercept 988.43 4.65 212.56 <0.0001
�1 n (meas) 17.24 5.66 3.05 0.0026
�2 m (brds) 17.07 5.66 3.02 0.0028
�3 µ 0.12 5.06 0.02 0.9815
�4 �b –0.25 4.65 –0.05 0.9572
�5 �w 11.56 4.65 2.49 0.0136
�12 n * m 33.49 6.20 5.40 <0.0001
�14 n * �b 0.50 5.37 0.09 0.9266
�24 m * �b 0.50 5.37 0.09 0.9259
�15 n * �w –17.06 5.37 –3.18 0.0017
�25 m * �w –16.89 5.37 –3.15 0.0019
�45 �w * �b 0.26 4.65 0.06 0.9556



control limit and less prevalent for the lower. This
may well approximate some wood products SPC
applications, such as kiln-drying where moisture
content is known to be distributed log-normally.
Using different distrbutional assumptions would
also necessitate different derivations of limits for
the COV charts as the underlying ANOVA theory
relies on normally distributed data.

This paper set out to accomplish three objec-
tives. First, we developed a method using com-
puter simulation in a designed experiment to
estimate producer’s and consumer’s risk in SPC
charts using different distribution assumptions.
We found that the simulation method can identify
problem situations quickly and give useful insight
into the nature of the problem. Second, we used
our reliability testing method to analyze com-
monly used SPC methods in the lumber industry
and a new proposed method called the COV ap-
proach. We found that the COV approach was sta-
ble, predictable, and reliable over a wide variety

of testing situations. The common approach used
in the industry performed poorly with respect to
both consumer’s and producer’s risk. Finally, we
propose the COV approach as a superior method
for real-time situations.

There is a great deal of research that remains to
be conducted in this growing field of study. The
scanning techology used in the field is rapidly
evolving and it is expected that three-dimesional
approaches will replace existing methods based
on lumber thicknesses and widths.

references

Gaylor, D. W., and F. N. Hopper. 1969. Estimating the
degrees of freedom for linear combinations of mean
squares by Satterthwaite’s formula. Technometrics
11(4):691–706.

Maness, T. C., C. L. Staudhammer, and R. A. Kozak.
2002. Statistical considerations for real-time size control
systems in Wood Products Manufacturing. Wood Fiber
Sci. 34(3):476–484

Maness et al.—RELIABILITY TESTING OF STATISTICAL PROCESS CONTROL 457

Table 11. Regression statistics for the Upper Bound of the Sb Chart using Satterthwaite Method for consumer’s risk.

Regression statistics

Multiple R 0.831
R square 0.690
Standard error of estimate 194.400
Observations 243.000

ANOVA table

df SS MS F Significance

Regression 11 19,426,967.6 1,766,088.0 46.7 <0.0001
Residual 231 8,728,183.8 37,784.3
Total 242 28,155,151.4

Model coefficients

Model Standard
Factor coefficients error t Stat p-value

�0 Intercept 563.45 14.03 40.17 <0.0001
�1 n (meas) 23.25 17.07 1.36 0.1747
�2 m (brds) 256.92 17.07 15.05 <0.0001
�3 µ –0.95 15.27 –0.06 0.9504
�4 �b 208.00 14.03 14.83 <0.0001
�5 �w 0.86 14.03 0.06 0.9510
�12 n * m 4.20 18.70 0.22 0.8224
�14 n * �b –0.02 16.20 0.00 0.9991
�24 m * �b 31.43 16.20 1.94 0.0536
�15 n * �w 0.47 16.20 0.03 0.9770
�25 m * �w –0.51 16.20 –0.03 0.9747
�45 �w * �b 0.05 14.03 0.00 0.9970



———, R. A. Kozak, and C. L. Staudhammer. 2003.
Applying real-time statistical process control to manu-
facturing processes exhibiting between and within part
size variability. Journal of Quality Engineering. 16(1):
113–125.

Montgomery, D. C. 1997. Design and analysis of experi-
ments. John Wiley & Sons, New York, NY. 704 pp.

———. 2001. Introduction to statistical quality control.
John Wiley & Sons, New York, NY. 796 pp.

Neter, J., W. Wasserman, M. H. Kutner, and C. Nacht-
sheim 1996. Applied linear statistical models, 4th ed.
xv, Irwin McGraw-Hill, Chicago, IL 1408 pp.

SAS Institute. 1999. SAS Language Reference: Dictio-
nary, Version 8, Volume 2. SAS Publishing, Cary, NC.
1287 pp.

Smithies, J. N. 1991. Sawmilling accuracy for bandsaws
cutting British softwoods. Forestry Commission, London,
UK. 16 pp.

Whitehead, J. C. 1978. Procedures for developing a
lumber-size control system. Canada Department of the
Environment, Forestry Directorate, Western Forest Prod-
ucts Laboratory, Vancouver, BC. 15 pp.

Woodall, W. H., and E. V. Thomas. 1995. Statistical pro-
cess control with several components of common cause
variability. IIE Transactions 27 757–764.

458 WOOD AND FIBER SCIENCE, JULY 2004, V. 36(3)


