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ABSTRACT 

Radial tension failures have occurred in some curved glulam beams. Radial stresses in curved 
beams are generally computed using only the bending moment, e.g., Wilson's equation. This work 
was pelformed to provide additional insight into the effect on the radial stresses due to the axial loads 
that are present in the curved beams. 

Equations of tangential, radial, and shear stress were developed for curved beams under an ax~al 
load. The theory of elasticity with polar coordinates for plane stress applied to an orthotropic material 
was used. Two loblolly pine glulam specimens (orthotropic) and one aluminum specimen (isotropic) 
with sharp radii and high dIR ratios were tested for the purpose of verifying the theoretical tangential 
and radial 5tress distributions that were predicted by the equations. In the aluminum specimen test, 
theoretical and experimental values compare favorably. In the glulam specimen tests, a favorable 
agreement was obtained for the tangential stress between the theoretical and experimental values, 
while the experimental radial stress values were about 2 to 4 times larger than the theoretical values. 

The theoretical radial stresses predicted by Wilson's equation were verified by a rigorous theory of 
elasticity solution as both solutions gave almost identical results. Since the elasticity solution included 
the effect of axial load. we conclude that the effect of axial load on the radial stress in curved beams 
is small. 

Kt>y\l.orda: Axial loads, beams, radial stress. 

INTRODUCTION 

Radial-tension separation is a problem that exists when using curved glul;tm 
structural members. 'These separations have not caused structural collapse, but 
there have been instances where radially fractured members have been ren~obed 
andlor repaired. Restoration is costly. 

The causes of radial stress in glulam curved beams have not yet been fi~lly 
undel-stood. The factors that have been considered in stress determination arid 
analysis are the effect of the bending moment, shrinkage and swelling of the \voot.l, 
and the springback tendency due to the bending of the laminations. 

In the stress analysis of curved beams, the effect of an axial load on the radial 
stress has generally been ignored, while the effects of bending moment and axial 
load have been superimposed for the tangential (circumferential) stress. This 
oversight could be critical in wood because the allowable tension stress perpen- 
dicular to the grain is 1.8% to 12%' of the allowable tension stress parallel to the 
grain. 

The purpose of this paper is to call attention to the effect of axial loads in the 
design of glulam curved beams. The study consists of two parts. The first part 
deals with formula development where a set of stress equations (tangential, radial, 
and shear) are developed by using the theory of elasticity applied to an orthotropic 
material under an axial load. The second part consists of experimental tests that 
are used to verify the theoretical results. Two glulam specimens and one alumi- 
Wood ~irzd f r h o  .\<I~II< c .  1513). 1981. pp. 163-275 
I '  1981 h y  the Soc~ety of Wood Sc~ence and  Technolog) 
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num specimen were tested to observe the stress correlation between the theory 
and the experimental tests. 

Symbols 
a = radius of curvature at the concave surface 
b = radius of curvature at the convex surface 
d = height of the rectangular cross section 
t = width of the rectangular cross section 

R = radius of curvature of the centroid of the cross section 
Y = distance away from the centroid of the cross section 
r = radius in polar coordinates system 
0 = angle in polar coordinates system 

c,, c,, c,, c, = material property constants 
B 7  C3 ] = geometrical parameters B ,  c, D 

::: :: ] = roots of characteristic equations 

N,, N, = determinant of matrices 
M = applied bending moment 
V = applied shear force 
P = applied axial load 

uol, uo2, us = tangential stresses 
(T,,, a,,, u, = radial stresses 

rr0,, Tr&, T,, = shear stresses 
E ,  G ,  p = modulus of elasticity, modulus of rigidity and Poisson's ratio 

of isotropic materials 
E,, Ej  = moduli of elasticity in the i and j direction, respectively 
E,, E, = moduli of elasticity in the tangential and radial direct~on, 

respectively 
El,, ER = moduli of elasticity of wood in the longitudinal and radial 

direction, respectively 
Gro = modulus of shear in the r-0 plane 
GLR = modulus of shear of wood in the L-R plane 
par = Poisson's ratio (ratio of strains in the r direction to 0 direction 

(for a uniform normal stress in the 0 direction)) 
pij, pji = Poisson's ratio as defined in p8, 

p l , ~  = Poisson's ratio for wood as defined in p,, 
( b ( r , ~ ) .  $1, $2, 4 = stress functions 

f,(r), f2(r) = functions of r 

LITERATURE REVIEW 

The Winkler-Bach solution is a well-known approximate solution for curved 
members, which provides the tangential stress distribution for bending. Exact 
solutions for tangential, radial, and shear stress for curved beams under bending 
and shear loads are provided by Timoshenko and Goodier (195 1). Oden (1967) 
used the equations of equilibrium to develop a set of stress equations that allow 
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for pressure on the circular boundary, axial force, and bending moment. All of 
these formulas were developed to determine stresses in curved beams made from 
isotropic materials. 

Wood is an orthotropic material with different elastic properties along three 
mutually perpendicular axes. 'Therefore, all of the existing equations were con- 
sidered questionable when applied to glulam curved beam design. It is especially 
important to recognize that in general wood is weak in tension in the direction 
perpendicular to the grain. 

Wilson ( 1939) developed a simple and conservative equation for radial stress 
distribution, which is recommended by the American Institute of Timber Con- 
struction (A.I.T.C.). This radial stress equation is 

Norris (1963) developed the first rigorous solution for analyzing wood curvctl 
beams under bending by using the theory of elasticity applied to o r tho t~op~c  
materials. Following the same trend as Norris, Foschi (1968) extended the exact 
solution for all load combinations of bending, shear, and axial force. Although 
the exact solution was provided, it was not commonly used in design or analys15. 
The reasons are the complexity of the solution and the lack of known elastic 
properties for different wood species. 

FORMULA DEVELOPMENT 

Polar coordinates were used throughout the formula development. Without 
repeating all of the basic elasticity equations, the main steps of the develop~nent 
will be shown. 

The equation of equilibrium is satisfied by taking a stress function +,,,,, uhich 
expresses the stresses as follows: 

The compatibility equation of deformation is obtained by eliminating the dis- 
placement terms in the strain-displacement equation. 'The elastic property con- 
stants relationship for an orthotropic material is 

Equation 4 is substituted into the stress-strain equations and then substituted into 
the compatibility equation. In terms of the stress function +, , ,o , ,  the compatibility 
equation becomes 
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Case I C a s e  I 1  

FIG. I .  Cantilevel- curved beam model 

where 
I 

c I = 
E, 

In establishing the solution by using simple stress functions, the problem is sep- 
arated into two parts (Fig. I ) .  

The stress function thr Case I is 

The reason for using a cosine function is that both the normal force N and bending 
moment M along the curve vary as a cosine function. By substituting the stress 
function (I,, into Eqs. 1 and 2,  both resultant tangential and radial stresses, tr, and 
(J,., are also cosine functions. The same principle applies to the shear stress. 
Similar reasoning can be applied to all three of the stresses in Case 11. 

The stress function for Case I1 is 

cbs = f.(r) ( 7 )  

Upon substitution of both stress functions into the compatibility Eq. 5, two hu- 
mogeneous linear differential equations were obtained. These equations were 
solved by letting f(r) = r"'. Then the corresponding characteristic equations were 
solved. Unknown constants in these solutions were determined by using bnund- 
ary conditions (BC) as follows: 
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BC # I  a, = T , ~  = 0 for r = a and r = b (8) 

BC #3 ugr dr = - M,, ( 10) 

BC # I  and BC #2 were applied to Case I and BC # I  and BC #3 were applied 
to Case 11. The stress distribution equations for Case 1 are: 

Similarly the stress equations for Case I1 are: 

a,,, = 2B + Cfi3r"z-2 + ~ f i ~ ~ " 4 - 2  

= 2B + Cm3(m3 - l)rm3-' + Dm,(m, -- I)r".-" 

Tr0.2 = O 

where 
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The resulting equations for an axial load on a curved beam are: 

APPLICATION OF T H E  SOLUTION 

The stress equations 17, 18, and 19 were developed for a constant narrow 
rectangular cross-sectional curved beam with a unit cross-sectional width. The 
stress distributions for :in orthotropic (loblolly pine) cantilever curved beam with 
a unit force at the end section were calculated to demonstrate the solution. The 
calculations were then repeated for an isotropic material. Both sets of stress 
distributions are shown in Fig. 2. Values inside and outside the parentheses in 
Fig. 2 apply to an orthotropic material (loblolly pine) and an isotropic material. 
respectively (see Appendix I). The solution shown for an isotropic material is 
valid for any isotropic material. 

EXPERIMENTAL TEST-MATERIALS A N D  METHODS 

An (2024-T35 1 )  aluminum (an isotropic material) curved beam (Fig. 3) with 
d/R = 1.33 and two 41-laminas loblolly pine glulam (an orthotropic material) be.lms 
(Fig. 4) with d/R = 0.39 were tested to observe the strain distribution. These 
sharp radius, high d/R xpecimens were tested in order to produce radial stresses 
large enough to be accurately measured. Electric strain gauges were useti to 
measure the strains. On the aluminum specimen, 120 degree rosette gauges were 
used to obtain the experimental strains. These values were substituted into Hooke's 
law to obtain the experimental radial and tangential stresses. On the glulam spec- 
imen, strain gauges oriented directly in the radial and tangential directions were 
used to obtain the strains, which were then converted to experimental stresses 
through Hooke's law for an orthotropic material. The resulting experimental stress 
distributions were plotted along with the theoretical values in Figures 5-7. The 
theoretical stress distributions were determined with a (Fortran IV) computer 
program as described in Appendix 11. In the glulam specimen pulling load test, 
visible separation along the glue line occurred when the load reached 470 pounds. 
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Radial Tangential Shear  
S t ress  (psi) Stress  (ps i )  S t ress  (psi)  

F I G .  2. Stres5 distribution plots for the example solution. (Values in\ide the pal-enthese\ .ire f1.w 
the orthotl-opic material (loblolly pine), while values outjide the pill-entheses a1.e fol- the isotl-opic 
miitel-ial.) 

DISCUSSION 

Considering the stl-ess distributions for the example (Fig. 7 ) ,  a pure axial load 
at :t I-adial cl-oss section of a cul-ved beam produces a very small effect in the 
stress at the location of the load, but the stress increases with increasing distance 
fi-om the loaded section. In comparing the resulting theoretical stl-ess value in 
Fig. 2,  a negligible difference of I-adial stress was found between the orthotropic 
mater-ial (loblolly pine) and the isotropic material. The isotropic material stress 
fa-mulas are applied to woocl, although only the loblolly pine was used as an 
orthotropic material model in the example. 

The aluminum specimen (an isotropic mater-ial) test results reflected an agree- 
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-3/4" Hole 

FIG. 3. The dimensions and locations of strain gauges for the aluminum specimen 

ment between the theoretical and experimental values of tangential and rad~al 
stress as shown in Fig. 5 .  

The loblolly pine glulam specimen test used to verify the formula for an ortho- 
tropic material showed favorable agreement in the tangential stress between the 
theoretical and experimental values as shown in Figs. 6 and 7. However, the 
experimental radial stress values were about 1.2 to 2 times the theoretical values 
at the center sections and 0.5 to 4 at the 45 degree sections as shown in Figs. 6 
and 7. These discrepancies may be due to the following reason. No elastic prop- 

e - dimensional electrical 

$i:Eminasi 

17;1 2 

d L95 -=-=.386 
R 12.81 

PIC,. 4. The dimensions and locations of strain gauges for the glulam specimens. 
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- T h e o r e t i c a l  C u r v e  
X E x p e r i m e n t a l  Value  

FIG.  5 .  Distributions of theoretical stress and experimental stress for the aluminum speci~nen 
pulling test. 

erty parameter test was performed, and the parameters used were picked firom 
the common engineering table. This appears to be a very important source of 
error. Past research by others indicates that accurate ElI, values for all laminations 
are absolutely essential. 

Wilson's design equation (Eq. a in Literature Review) was used to plot the 
radial stress distribution for comparison with the theoretical and experimental 
radial stress values. The maximum radial stress values of the theoretical curve 
developed in this paper and Wilson's equation were almost identical as shown in 
Figs. 6 and 7, which confirms the agreement between Wilson's equation and the 
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/ / 
Shear Tangentiol 
Stress (PSI) Stress (ksi) Stress (psi) 

Rad ia l  

1 8=90° --- - -  Wilson's Equat ion Curve 

Theo re t i ca l  Curve 
x Experimental  Value 

FIG.  6. Distribution\ of theoretical \Ires\ and experimental stl-eas for the glulam specimen pu~h ing  
load te\t. 

theory of elasticity for- :in included angle of 180 degrees. This agreement indicates 
that the effect of P is small and reinforces the use of Wilson's equation for design. 

The actual radial stress exceeded the predicted stress by a factor as high as 4 
for these sharp radius beams. Therefore judgment must be exel-cised in applying 
the design stress equation to obtain the predicted stress or an additional safety 
factor must be applied to the 5% exclusion limit value for tension perpendicular 
to the grain as given in the design table. 

SUMMARY A N D  CONCLUSION 

An exact solution for an axial load on a curved beam was developed by using 
the theory of elasticity with polar coordinates for a plane stress problem applied 
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- -- - Wilson's E:quation Curve 
Theoretical Curve 

,Y Experimental Value 

FIG. 7. Distributions o f  theoretical stress and experimental stress for the glulam specimen pull ir~g 
l o~ id  test. 

to an orthotropic material. An aluminum specimen pulling load test had been 
performed to verify the theoretical tangential and I-adial stress distributions. A 
good agreement was obtained between the experimental and the theoretical stress 
values for this aluminum specimen test. 

Two glulam curved timber specimens were tested with pulling and pushing loads 
to verify the theoretical radial and tangential stress values. These glulam specimen 
tests yielded experimental values of tangential stress which compared favorably 
to the theoretical stress values. The values of the radial stress were about 2 to 4 
times larger than the theoretical stress values. The maximum radial stress values 



274 WOOD A N D  FIBER SCIENCE, JU1.Y 1983, V.  l5(3)  

for the theoretical curve developed in this paper and Wilson's design equation 
curve were almost identical. Further studies of glulam curved beams are needed 
in the areas concerning residual tension separation and solutions for external 
loads other than bending moment, shear, and axial force at the end section. 
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APPENDIX I 

In ordel- to show the st!-es\ distributions in an orthotropic (or isotropic) cantilever curved beam, 
the following problem was solved using the dimensions a = lo", b = 15", t = 2". A unit axial force 
acts at the end section. Because the cross-sectional width t is no longer unity, all the resultant stress 
values have to be divided by t. To represent an orthotropic material model, loblolly pine was used. 
The elastic parameters corre\ponding to 13.4% moisture content and 11.465 glcrn:' density are: 

EL = 1608.0 x lo3 psi 
E, = 181 .8 x IO" psi 

G,,, = 131.0 x 105psi 
p , . ~  = 0.328 

I'hen, the stress equations 17, 18, ant1 19 were solved using these dimensions and elastic propel-t) 
parameters. Because a large number of calculations were required, a (Fortran IV) computer prcigranl 
(Appendix 11) was used to provide all the values required to plot the stress distributions at the 0". 
30". 45", and 6O" sections which are shown in Fig. 2 (values inside the parentheses). 

For isotropic materials, the elastic property parameter relationships G = El?(! + p)  and E, = I:,: 
= E were applied to yield the values of the roots (m:, = 3,  m, = - 1 ,  and m:, = 2 ,  m, = 0), and the 
\tress equations were simplified. Because m:,, m, and m,, m, are defined, the elastic property p,tr;irn- 
eters of an isotrop~c material are not needed in using Eqs. 17, 18, and 19 to determine the stresses. 
For a comparison of resultant stresses between an orthotropic material and an isotropic material. the 
previous.example was solved again as an isotropic material. The resultant stresses were plotted in 
Fig. 2 (values outside the parentheses). 

APPENDIX 11 

A (Fortran IV) computer program was written to perform the calculations for the example plots 
and the theoretical curve plots. This program contains the basic steps as follows: 
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I .  input data-elastic property parameters (El , ,  El,, GI,,, p,~,), inner and outer radii (a,  b), thickness 
(t). external loading (moment M and normal force N at the end section) 

2. determine c , ,  c,. and c, by Eq. 5.1 
3. determine m,, m, and m:,, m, by Eqs. 13.3 and 16.3 
4.  determine N ,  and N, by Eqs. 13.2 and 16.2 
5 .  determine tr,., tr,, T,., by Eqs. 17. 18. and 19. 

The stresses tr,, rr, and r,, due to an axial force with the corresponding moment (Case I)  and pure 
moment (Case 11) are determined separately. This computer program can be used to perform the 
calculations for any combination of bending moment and normal force acting at the end section. The 
output consists of the stress values at the Ill0 points along the cross section at the O", 30". 45". 60°, 
and 90" sections along the circular cur-ve. 




